
Research and Applications

Automated meal detection from continuous glucose

monitor data through simulation and explanation

Min Zheng,1 Baohua Ni,2 and Samantha Kleinberg1

1Computer Science, Stevens Institute of Technology, Hoboken, New Jersey, USA, and 2Electronic Engineering, Tsinghua Univer-

sity, Beijing, China

Corresponding Author: Samantha Kleinberg, PhD, Computer Science, Stevens Institute of Technology, 1 Castle Point on

Hudson, Hoboken, NJ 07030, USA; samantha.kleinberg@stevens.edu

Received 22 May 2019; Revised 9 July 2019; Accepted 14 August 2019

ABSTRACT

Background: Artificial pancreas systems aim to reduce the burden of type 1 diabetes by automating insulin dos-

ing. These systems link a continuous glucose monitor (CGM) and insulin pump with a control algorithm, but re-

quire users to announce meals, without which the system can only react to the rise in blood glucose.

Objective: We investigate whether CGM data can be used to automatically infer meals in daily life even in the

presence of physical activity, which can raise or lower blood glucose.

Materials and Methods: We propose a novel meal detection algorithm that combines simulations with CGM, in-

sulin pump, and heart rate monitor data. When observed and predicted glucose differ, our algorithm uses simu-

lations to test whether a meal may explain this difference. We evaluated our method on simulated data and

real-world data from individuals with type 1 diabetes.

Results: In simulated data, we detected meals earlier and with higher accuracy than was found in prior work

(25.7 minutes, 1.2 g error; compared with 48.3 minutes, 17.2 g error). In real-world data, we discovered a larger

number of plausible meals than was found in prior work (30 meals, 76.7% accepted; compared with 33 meals,

39.4% accepted).

Discussion: Prior research attempted meal detection from CGM, but had delays and lower accuracy in real data

or did not allow for physical activity. Our approach can be used to improve insulin dosing in an artificial pan-

creas and trigger reminders for missed meal boluses.

Conclusions: We demonstrate that meal information can be robustly inferred from CGM and body-worn sensor

data, even in challenging environments of daily life.
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic, lifelong disease that affects mil-

lions of individuals.1 T1D is characterized by the inability to pro-

duce insulin, so individuals must manage their blood glucose (BG)

using an insulin pump or injections. While meals are a key cause of

BG changes, other factors such as stress and activity also affect BG

and insulin sensitivity, making T1D complex to manage. Many com-

plications of diabetes such as chronic kidney disease2 are a result of

long-term hyperglycemia (dangerously high BG).3 Tight glycemic

control can prevent microvascular complications of diabetes and yet

tighter control increases the risk of hypoglycemia, which can lead to

seizure, coma, and death.4

Researchers have aimed to reduce the burden of T1D through ar-

tificial pancreas (AP) systems that measure glucose with continuous

glucose monitors (CGMs), determine BG trajectory, and deliver in-

sulin through a pump to automatically correct high values. CGMs

measure glucose in fluid between cells as a proxy for BG, but

because this is delayed relative to BG a rise in glucose may appear
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well after a meal has begun. AP systems either require users to pro-

vide input about their meals (making this no longer a closed loop) or

infer meals from CGM data so that the system can correct for them.

Most approaches to detect meals track glucose rate of change

(ROC),5 but in the real world, this is susceptible to false positives

due to physical activity (which can increase BG) and noise. While

the Glucose Rate Increase Detector (GRID)6 addresses those chal-

lenges, this comes at the expense of delays in recognizing meals and

GRID does not yet identify meal amount, as is needed for insulin

dosing. Meal detection can also help identify missed meal insulin bo-

luses,7 which are associated with poor glycemic control.8

To address this, we propose a method to detect meals and

amount of carbohydrates consumed by combining CGM, insulin,

and activity monitor data with a simulation of glucose. We build on

the Food and Drug Administration–approved glucose-insulin model

(GIM),9,10 which incorporates physical activity. When simulated

and observed glucose differ significantly, that triggers a search for a

meal that may explain the difference.

Background
We aim to automatically infer meals from data collected by body-

worn sensors (specifically, CGM and activity sensors), as this allows

for a fully automated solution. This is similar to finding latent varia-

bles (as meals are not directly observed), but prior work has aimed

to identify causal structures with latent variables,11 rather than to

recover when latent events happen, as is needed for meal detection.

A meal’s effect on glucose could be viewed as a changepoint, but

methods such as Bayesian online changepoint detection12 only iden-

tify that a change has occurred (not why) and cannot provide the

meal information needed to adjust insulin.

Thus, we focus on related work in detecting meals for T1D man-

agement. Many approaches use the ROC of CGM measurements,6

as meals can lead to a rapid increase in BG. One approach tracking

the speed of glucose changes combines a set of methods (eg, Kalman

filters) to predict glucose, and identifies meals when they are sup-

ported by three-quarters of the methods.5 Lee and Bequette13 used

Kalman filters to find meals and identified meal size by feeding the

filtered glucose trajectory into a finite impulse response filter, where

a meal is an impulse. The variable state dimension (VSD) ap-

proach14 also builds on Kalman filters and identifies meal time and

size simultaneously. However, these methods have high false posi-

tives in the presence of exercise15 and stress,16 as both can lead to an

increase in glucose that could be mistaken for a meal. Further, meal

detection is delayed, as the methods must wait until a meal affects

BG enough to be distinguished from other factors that also increase

BG, such as intense exercise.

As an alternative, Turksoy et al17 introduced a multivariate

adaptive model to detect meals using an unscented Kalman filter

(UKF) for state estimations. However, due to the use of the UKF, pa-

rameter estimation may not converge to the true value, and instead

can become stuck in a local minimum. Ramkissoon et al18 also built

on a UKF, but this approach not yet been evaluated on real-world

data. Other approaches19 use the minimal glucose physiological

model,20 modifying it to capture physiological trends and detect

meals. This does not require tuning to individual parameters, but

does not identify the meal size, as is needed to accurately estimate

insulin needs.

Table 1 summarizes the state of the art. Only 2 methods incorpo-

rate physical activity, and half were tested on real-world data.

GRID6 does both, but detects meals �42 minutes after they start,

and did not evaluate meal size error. While Lee and Bequette13

reported low meal size error, the approach was tested in simulations

and without exercise, so it is unknown whether similar results will

be obtained in the real world. VSD identified meal size14 and has

been applied to real-world data,21 but it has significant delays and

the meal size errors can lead to overestimates of insulin doses.

Samadi et al23 also identified meal size in real-world data, but with

a high standard deviation in errors (28 g, roughly the amount of car-

bohydrates in a medium potato or banana). Further, that work evalu-

ated meal size using the set of carbohydrate estimates within 2 hours

of the start of the meal, making it difficult to compare results to meth-

ods that identify the meal and its quantity at the same time. We are

not aware of any evaluations in real-world data in the presence of ex-

ercise. Our simulation-based explanation (SBE) approach instead

finds meal times and amounts earlier and more accurately, enabling

integration into insulin reminders and fully automated systems.

Significance
1. Earlier and more accurate meal detection: Unlike ROC-based

methods, which cannot detect a meal until there is a large BG

change, we leverage simulation to rapidly identify meals that ex-

plain changes from expected glucose. This allows insulin to be

delivered earlier, preventing unhealthy glucose excursions.

2. Robustness to real-world challenges: Real-world CGM data are

noisy, and many factors other than meals affect glucose. Other

methods prioritize BG prediction, but this comes at the expense

of meal detection, as errors compound throughout a day. We

provide more robust results by allowing periodic restarts, and

optimizing for meal detection by focusing on how well meals ex-

plain observed glucose.

3. Realistic evaluation: We evaluate accuracy for detecting meal

time and size on realistic full-day simulations that include meals

and physical activity, and on challenging real-world data.

MATERIALS AND METHODS

We first formalize the problem and notation, then introduce the

model we build on, and last, describe our approach for meal detec-

tion: SBE.

Problem description and notation
Our primary motivation is improving AP systems, which use a

CGM and insulin pump. Thus, we assume that these data sources

are available. The pump records continuous basal insulin (pmol/kg/

min) and discrete insulin boluses (pmol/kg). CGMs measure glucose

(mg/dL) at 5-minute intervals. We assume that individual informa-

tion is available (body weight, resting heart rate [HR]), individuals

wear an activity tracker capturing heart rate, and meals are the only

unmeasured variable affecting BG. However, in experimental

results, we demonstrate that our approach succeeds even when this

does not hold.

We denote the data by D ¼ ½G; HR; B; I], where each bold

variable is a time series. G ¼ ½G 1ð Þ; . . . ;G nð Þ� is a subject’s glucose

from time 1 to time n, HR denotes heart rate, B is insulin boluses,

and I the insulin infusion rate at each time point. Because these devi-

ces record at different frequencies, we synchronize all to the 5-min-

ute rate of the CGM.

Our task is using observations to detect meals, meaning

their start time (mst), duration (mdu), and size (mc, grams of

carbohydrates).

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1593

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article-abstract/26/12/1592/5575393 by guest on 05 D
ecem

ber 2019



Background: GIM
Our approach relies on simulation, rather than fitting to the ob-

served glucose as in other approaches, such as VSD14 and GRID,6 as

this lets us overcome measurement errors. We build on GIM,9,10,24,

which is well validated and models the effect of physical activity on

glucose.

The main parts of GIM are endogenous glucose production, glu-

cose utilization, and how exercise influences glucose. Glucose utili-

zation includes insulin-independent utilization UiiðtÞ (constant

glucose uptake by the brain and erythrocytes) and insulin-dependent

utilization UidðtÞ (the effect of endogenous and exogenous insulin).

Total glucose utilization U at time t is

UðtÞ ¼ UiiðtÞ þUidðtÞ: (1)

To incorporate physical activity, GIM builds on Breton,25 whose

approach linked insulin action and glucose effectiveness to current

HR (HRðtÞ) and basal heart rate (HRb). The approach models

changes in glucose uptake due to energy consumption (Y) and insu-

lin action (Z):

_Y tð Þ ¼ � 1

THR
Y tð Þ � HR tð Þ �HRbð Þ½ �; Y 0ð Þ ¼ 0 (2)

_Z tð Þ ¼ � f Y tð Þð Þ
Tin

� 1

Tex

� �
Z tð Þ þ f Y tð Þð Þ; Z 0ð Þ ¼ 0 (3)

f Yð Þ ¼
Y

aHRb

� �n

1þ Y
aHRb

� �n : (4)

The variables THR; Tin; and Tex are parameters to model the

physiological reaction to energy expenditure and exercise. To model

the effect of exercise on insulin-dependent glucose utilization,

UidðtÞ, Dalla Man et al10 added a scale variable WðtÞ defined as

W tð Þ ¼
Ð t
0 HR tð Þ �HRbð Þdt for t < tz

0 otherwise

(
(5)

where tz is the end of the activity’s effect on insulin action, Z. Exer-

cise (reflected in HR) has a cumulative effect, but is modeled with a

step increase in HR. As we discuss in the following section, we use

HR measurements at each time to capture exercise intensity.

Meal detection using SBE
Our method has 3 parts: (1) find when observed glucose diverges

from predicted glucose, (2) generate predicted glucose for potential

meals using GIM, and (3) test if potential meals explain observed

glucose. Figure 1 shows an overview.

Find diverging point

First, we must determine when to search for a meal. To do this effi-

ciently, we identify times when observed and predicted glucose dif-

fer, and then determine whether this difference can be explained by

a meal. We continually update the insulin infusion rate IIRðtÞ and

boluses using the insulin pump data at each t and update HRðtÞ in

equation 5 using the HR data. Thus, GIM is updated with observed

variables ðHR;B; IÞ (all except G), to obtain the predicted glucose

time series G0. We aim to determine when the difference between G

and G0 is large enough that a meal may explain it. As CGM data can

be noisy, we first smooth G using Savitzky-Golay filter,26 then com-

pare the means of G0 and G over a window f. This handles the noise

and outlying values of CGM data better than comparison at a single

time point. When the difference between G0 and G is greater than a

threshold /, we call this time point t the diverging point.

More formally, we test

jG0 t � f : t½ � �G t � f : t½ �j > / (6)

where G0½t � f : t� denotes the mean of G0 from time t � f to time t.

We set / as a percent of the mean observed glucose (5% in this

work).

Generate predicted glucose sequence

When t is a diverging point, the algorithm then searches for a meal

that may have begun before t. A meal is defined as

m ¼ ½mst;mc; mdu�; with mst being the start time, mc being the

meal size (grams of carbohydrates), and mdu being the meal dura-

tion. To constrain the search space, we set a maximum meal dura-

tion C; maximum meal size mmax, and maximum lag s between

meal start and when glucose diverges. Thus, t�s � mst � t.

We then perform a grid search over combinations of meal timing

(start, duration) and size, generating predicted glucose G0 for each

meal, and comparing it against the observed glucose. For efficiency,

we begin with a resolution of 1 g for meal size and 2 minutes for

meal time until dEuc < 2e. Then we perform a finer search, using

0.1 g and 1 minutes. These values were chosen as a tradeoff between

efficiency and precision.

For each potential meal m, we update the parameters in GIM be-

ginning at mst. In GIM, glucose at time t is proportional to the car-

bohydrate ingestion rate dd tð Þ (in mg/min):

G
0

tð Þ / dd tð Þ (7)

We assume that meals are consumed at a constant rate, as this is

more realistic than assuming all carbohydrates are ingested at a sin-

gle time as in other approaches. Thus, the ingestion rate at time t is:

Table 1. Related work in meal detection from continuous glucose monitoring

Method Real-World Data Exercise Mean Delay (min) Mean Meal Size Error (g)

MDA5 Yes No 30 NR

Lee and Bequette13 No No 35 6 8.3 �0.75 6 9.3

GRID6 Yes Yes 42 NR

VSD (2015)14 No No 34 6 19 4.95-10.4

Ramkissoon et al18 No Yes 28 6 3 NR

VSD (2017)21 Yes No 45 6 14 5.72-10.4

Kölle et al22 No No 35 (max) NR

Samadi et al23 Yes No 34.8 6 22.8 1.7 6 28.1

SBE (our method) Yes Yes 25.7 6 5 1.2 6 3.6

Values are mean 6 SD or range, unless otherwise indicated. Meal size error is given in grams of carbohydrates.

GRID: Glucose Rate Increase Detector; MDA: meal detection algorithm; NR: not reported; SBE: simulation-based explanation; VSD: variable state dimension.
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dd tð Þ ¼
mc

mdu
; t 2 mst; mst þmdu½ � (8)

Updating dd tð Þat each time t during the meal yields the predicted

glucose G0 for each potential meal m.

Meal detection

After simulating G0 for all potential meals, m we must determine

which meals (if any) explain the observed glucose G. We accept a

meal when the average Euclidean distance, dEuc, between G0 and G

is smaller than a threshold e. For a diverging point t and potential

meal m ¼ ½mst; mst þmdu�, dEuc is:

dEuc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
i¼mst
jG0

ið Þ �GðiÞj2
q

t �mst
(9)

If multiple meals have dEuc < e, we select the one with the low-

est dEuc. The value for e was chosen after tuning (see the Supple-

mentary Appendix for details on this and algorithmic complexity).

Figure 1 shows an overview of SBE. We start with observed glu-

cose (solid line) and find when it diverges from predicted glucose

(dotted line). Then, we search for meals that may explain the differ-

ence. After generating predicted glucose trajectories (dashed lines),

we detect the meal (green bar) that accounts best for the observed

glucose.

Experimental approach
We evaluate our approach using simulated data with ground truth

and real-world data in which meal information is missing and must

be inferred. While the real-world data do not have ground truth, us-

ing operational criteria, we demonstrate that our approach works in

realistic cases. We compare our approach with VSD, following the

details and parameter settings of Xie and Wang.21 We selected this

method for comparison because it detects meals and their size simul-

taneously and has been previously applied to real-world data with

high accuracy.

Simulated data

We first evaluate whether the algorithms can detect a full day of

meals in the presence of exercise. All simulations are created using

our implementation of the GIM. Experiments for parameter estima-

tion are described in the Supplementary Appendix. We first generate

a representative day, before generating a cohort of 100 individuals.

For the single day, we use the parameters: body weight 60 kg, basal

HR 60 beats/min, and basal insulin rate 2.5 pmol/kg/min. The se-

quence of events is shown in Figure 2 and Table 2.

We then simulate 100 more individuals for 24 hours each with 1 ep-

isode of exercise, varying the parameters for body weight (40-90 kg),

exercise duration (30-50 minutes), meal duration (10-40 minutes),

meal size (10-50 g), and meal start time.

Our primary evaluation metrics are delay and meal size error.

Delay is the difference between when a meal is identified and the ac-

tual meal start time. This metric is critical because identifying a

meal more quickly allows earlier bolus reminders or insulin adjust-

ment via an AP. Meal size error is the difference in grams of carbo-

hydrates between the detected meal and ground truth. This

information is necessary for accurate insulin dosing. We additionally

evaluate recall and precision of eating minutes. Recall is how much

eating time is correctly recovered, and precision is how much identi-

fied eating time is actually during a meal.

Real-world data

To evaluate our approach on real-world data, we use the Diabetes

Management Integrated Technology Research Initiative (DMITRI)

dataset.28 DMITRI includes data for 17 individuals (10 men, 7

women) in daily life for 3 days each (around 72 hours). Participants

were active, exercising 2-3 times per week (13 of 17, >4 times per

week), and during the study activities included running, cycling, and

yoga. The data used here are glucose (Dexcom 7þ CGM), insulin

basal and bolus rates (insulin pumps), and HR (Polar chest strap).

Participants used their own insulin pumps. The HR and insulin data

were synchronized to the 5-minute intervals of the CGM. At the be-

ginning of data collection, body weight and resting HR were

recorded. To handle missing CGM data (mean 24.6% missing), we

use the imputation approach of Rahman et al,27 which had high ac-

curacy on this dataset. We excluded 2 individuals with >40% miss-

ing data. After imputation, we had 1437 hours of data for 15 people

(8 men, 7 women).

The key difference from simulation is in evaluation. While par-

ticipants photographed their meals, these data were not synchro-

nized to the rest and is not part of the publicly available DMITRI

dataset, so there were no ground truth meal times. Thus, we use op-

erational criteria based on prior work to determine if inferences are

plausible. We accept a meal if (1) it happens before an increase in

BG and (2) BG increases by 4 mg/dL within 30 minutes after the

meal starts. This threshold is commonly used in works on identify-

ing meal onset from CGM data.13,14 This approach allows quantita-

tive evaluation of the algorithms, but it remains possible that there

are true meals that do not meet this criteria or nonmeal factors that

do. We also examine whether there is a nearby insulin bolus, as bo-

luses are generally administered in conjunction with a meal.

For our approach, we set body weight and resting HR using the

measured value for each subject. We set f ¼ 30 minutes (the length

of time series used to trigger meal search). As CGM data are every

5 minutes, this allows us to use 6 data points rather than only 2.

Figure 1. Overview of method: (A) identify times in which observed glucose differs significantly from predicted glucose, (B) simulate glucose trajectories with

varying meal sizes and times, and (C) determine which, if any, inferred meals account best for observed glucose. BG: blood glucose.
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Similarly, we set / ¼ 10% (threshold for identifying a diverging

point) and e ¼ 5 mg/dL (threshold for average Euclidean distance)

due to the noise in real data. For the maximum delay between the

start of a meal and the diverging point, we set s ¼ 60 minutes. For

VSD we use the parameter settings specified by Xie and Wang.21

RESULTS

Results on simulated data
We begin by discussing the case study, then the results for a simu-

lated cohort of 100 individuals. Both use a 24-hour day with 3 meals

at varying times plus exercise of varied duration and intensity. This

is challenging, as the effect of one event (exercise, meal) may persist

past the start of another.

Figure 2 shows results for both methods on the case study. First,

we detect breakfast of the exact duration and size as the ground

truth 25 minutes after it begins, and starting 1 minute earlier (recall

95%, precision 94.7%). VSD also identifies the meal start time with

a 25-minute delay, but overestimates size by 1.5 g. We detect lunch

with a 30-minute delay, with high accuracy for meal size (24.7 g

ground truth, 25 g inferred), but VSD identifies a meal of 56.3 g

with a 45-minute delay, which is a substantial overestimate. Finally,

we detect dinner 26 minutes after it begins, again with high accuracy

(40 g detected, 40.8 g ground truth). In contrast, with a delay of

50 minutes, VSD finds a meal of 80.3 g, which is nearly double the

actual meal size, and would lead to a dramatic overestimate of insu-

lin if used for dosing. Across the whole day, our approach has an av-

erage delay of 27 minutes vs 40 minutes for VSD. We estimate all

meals to within 1 g, while VSD has an average meal size error of

23.3 g. This suggests that our approach can be accurately used for

estimating insulin.

Results for the 100 simulated individuals for the full day are

shown in Table 3. Our approach detects meals sooner (mean 25.7 6

5 minutes) than VSD (48.3 6 9 minutes) and with lower meal size

error (1.2 6 3.6 g) than VSD (17.2 6 8 g). This difference would

have a substantial impact on insulin dosing. Note that VSD assumes

that a meal is ingested at a single time point (ie, it does not have a

duration), which is unrealistic and may contribute to errors.

Meal detection on real-world data
We now show that it is possible to apply our approach to real-world

data. This is challenging, as data can be missing, sensors are noisy,

and many unobservable factors affect BG. Nevertheless, we show

that in this challenging environment, our approach recovers a larger

number of plausible meals than VSD does.

On the DMITRI dataset, our approach detected 30 meals, with

23 (76.7%) accepted as plausible and 7 (23.3%) rejected using our

operational criteria. VSD detected 33 meals, but only 13 (39.4%)

were accepted and 20 (61.6%) were rejected. Thus our approach

has both more true positives and fewer false positives. We discuss 4

representative cases (breakfast, lunch, dinner, snacks). Full results

for all subjects are in the Supplementary Appendix.

Figure 3A shows a breakfast detected by both methods, around

6:00 AM However, VSD detects a second meal at 8:20 AM around the

time an insulin bolus is given, even though glucose has a downward

trend at the time. In Figure 3B, there is a smaller afternoon meal

(3:00 PM) and then what we expect is dinner based on the timing.

Both methods detect the snack, but VSD detects the second meal too

early, at a time when glucose is still decreasing and far from the in-

sulin bolus. Our approach detects a more reasonable meal time. For

lunch (Figure 3C), both methods detect a meal starting around

12:30 PM, but VSD has a false positive at 4:20 PM, while glucose is

Figure 2. Twenty-four hours of simulated data with ground truth meals (gray boxes), insulin doses (vertical black bars in meals), and exercise (light gray box).

Our approach finds all meals with low error (bars show meal duration), while variable state dimension (VSD) has significant error in meal size estimate (circles

show meal time). Meals for both methods are shaded to indicate meal size error (dark blue ¼ 0, yellow ¼ 40-g error).

Table 2. Detailed series of events for the whole-day simulation

depicted in Figure 2

Time Event

6:00 AM Simulation begins

7:20-7:40 AM Breakfast, 14-g carbohydrates

7:30 AM Insulin bolus, 70 pmol/kg

12:00-12:30 PM Lunch, 24.7-g carbohydrates

12:10 PM Insulin bolus, 80 pmol/kg

5:00-5:30 PM Run, average HR 140 beats/min

6:00-6:40 PM Dinner, 40.8-g carbohydrates

6:05 PM Insulin bolus, 80 pmol/kg

HR: heart rate.
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decreasing and almost an hour after an insulin bolus. For the dinner

in Figure 3D, we detect a meal beginning at 7:00 PM This time is

close to an insulin bolus and glucose increases right after the identi-

fied meal. In contrast, VSD detected a meal starting at 9:00 PM,

which is well after the initial rise in glucose and just before a second

insulin bolus.

Overall, while VSD detected 13 plausible meals, it also often (5

times) found a second false meal afterward, detected a meal with a sig-

nificant delay, or detected meals while BG was decreasing (20 total

rejected meals). Because VSD uses the error between predicted and ob-

served glucose to detect the onset of a meal, when the error is negative

and larger than the threshold, it erroneously detects a meal. However,

detecting extra meals, especially if an insulin bolus has already been

given, could lead to dangerously low BG if used in an AP.

DISCUSSION

Implications for diabetes treatment
Identifying meals automatically can have a substantial impact on

treatment of T1D, by allowing automated insulin dosing in an AP,

or reminding individuals about missed insulin boluses with meals.

While prior work has attempted to identify meals from CGM data,

meals and their quantity have not been inferred together in real-

world data that also include physical activity. Our approach outper-

formed VSD on both simulated and real-world data. We further

showed that meal times and their quantities can be reliably inferred

from CGM data even in the presence of physical activity in noisy

real-world environments. The reduced delay and higher accuracy of

our approach yields more actionable information for insulin dosing

with fewer potentially dangerous false positives and better estima-

tion of insulin needs. Integrating meal detection with an AP may al-

low a fully closed-loop system that does not have to wait for

glycemic excursions to adjust insulin—reducing variation in BG.

Our identification of meals can be used to prompt both reminders

for missed meal boluses as well as suggestions for the size of the bo-

lus needed. Beyond fully automated BG control via an AP, our work

can be extended to help individuals learn to better manage their BG.

One potentially significant area of future work is identifying not

only missed, but also inaccurate (eg, too small) meal boluses. This

can be done by simulating different sized boluses than the actual one

given to identify the optimal quantity and by providing this feedback

Table 3. Experimental results for 100 simulated people

Our Method VSD

Experiment Recall Precision Delay (min) Meal Size Error (g) Recall Precision Delay (min) Meal Size Error (g)

Breakfast 0.942a 0.947 24.9 6 3a 0.8 6 2.1a 0.920 0.951a 25.4 6 5 5.1 6 4.2

Lunch 0.917a 0.919 28.9 6 6a 1.0 6 3.2a 0.901 0.930a 43.5 6 8 16.1 6 6.3

Dinner 0.871a 0.881 27.8 6 7a 1.4 6 4.3a 0.845 0.893a 53.4 6 11 23.6 6 9.1

Overall 0.880a 0.933 25.7 6 5a 1.2 6 3.6a 0.860 0.936a 48.3 6 9 17.2 6 8.0

Delay is time between meal start and its detection and size error is in grams of carbohydrates. Recall and precision for VSD are at the meal level, rather than at

the minute level, as it does not infer duration.

VSD: variable state dimension.
aBest result for the metric and experiment.

Figure 3. Real-world continuous glucose (GLU) monitor (gray line) and insulin bolus data (vertical black bars) with accepted meals (black bar for our method or

black circle for variable state dimension [VSD]) and rejected meals (gray bar for our method or gray X for VSD), smoothed GLU (dashed blue), our predicted GLU

(orange line), and VSD-predicted GLU (green line). (A) Subject A (breakfast). (B) Subject B (snacks and dinner). (C) Subject C (lunch). (D) Subject D (dinner).
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to patients. Owing to the lifelong nature of T1D, a deployed system

in the real world will have significantly more than 3 days of data on

each individual. A promising avenue for future work is investigating

personalization, which may be able to further reduce the time needed

to detect a meal by adapting to each individual’s glycemic response.

Incorporating other factors affecting glycemia
One of the reasons diabetes is so difficult to manage is that many

factors, including stress,28,29 sleep,30 and hormonal cycles,31,32 may

influence glycemia. These factors are not accounted for by any exist-

ing meal detection algorithm. However, there are now wearable sen-

sors and apps that can automatically measure or track these factors.

For example, wristbands such as the Empatica E4 (Empatica, Milan,

Italy) track stress with electrodermal activity, consumer devices such

as the Fitbit (Fitbit, Inc, San Francisco, CA) track sleep, and there are

numerous apps for tracking menstrual cycles.33 Ultimately, we believe

that these signals could be automatically integrated with our work to

more accurately detect meals and provide better guidance on insulin

dosage. While patients are mainly taught to count carbohydrates,

meals with the same carbohydrate content but different protein and

fat can lead to different glycemic responses.34–36 Dosing suggestions

and feedback can ultimately be improved by integrating our meal de-

tection module and information on foods consumed such as from re-

cently developed methods for automated dietary monitoring.37,38

CONCLUSION

We introduced SBE, a new approach to automated meal detection

that combines simulation with observations of glucose and activity

to robustly identify meals even in noisy data. On simulated data, we

detect meals on average 10 minutes sooner than VSD, with an aver-

age error of only 1.2 g compared with 17.2 g in prior work. On real-

world data, our approach finds a larger number of plausible meals

while making fewer false positives. In future work, we aim to de-

velop an online version of the approach that could be run efficiently

as part of an AP and to incorporate data from other body-worn sen-

sors that capture other factors that influence glucose (sleep, stress).

Ultimately, our approach may be used to automatically provide

meal information to an AP and remind individuals managing their

own diabetes about missed insulin doses.
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