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Abstract. Individuals with Type I diabetes (T1D) must frequently
monitor their blood glucose (BG) and deliver insulin to regulate it.
New devices like continuous glucose monitors (CGMs) and insulin
pumps have helped reduce this burden by facilitating closed-loop
technologies like the artifical pancreas (AP) for delivering insulin au-
tomatically. As more people use AP systems, which rely on a CGM
and insulin pump, there has been a dramatic increase in the availabil-
ity of large scale patient-generated health data (PGHD) in T1D. This
data can potentially be used to train robust, generalizable models for
accurate BG forecasting which can then be used to make forecasts
for smaller datasets like OhioT1DM in real-time. In this work, we in-
vestigate the potential and pitfalls of using knowledge distillation to
transfer knowledge from a model learned from one dataset to another
and compare it with the baseline case of using either dataset alone.
We show that using a pre-trained model to do BG forecasting for
OhioT1DM from CGM data only (univariate setting) has compara-
ble performance to training on OhioT1DM itself. Using a single-step,
univariate recurrent neural network (RNN) trained on OhioT1DM
data alone, we achieve an overall RMSE of 19.21 and 31.77 mg/dl
for a prediction horizon (PH) of 30 and 60 minutes respectively.

1 Introduction
Type 1 diabetes (T1D) is a chronic lifelong disease that requires
dozens of daily decisions to manage blood glucose (BG). While
keeping BG in a healthy range is critical for avoiding complications,
it is challenging, as meals and many other factors like exercise and
stress can affect BG and insulin sensitivity. Closed-loop technolo-
gies, which connect a continuous glucose monitor (CGM) and insulin
pump with a control algorithm, could relieve this burden by auto-
matically dosing insulin. This requires an accurate forecast of where
glucose is headed so the right amount of insulin can be delivered to
keep BG within a target range dynamically.

Prior works include using system identification techniques to
model glucose-insulin interactions [18, 3] , using classic autoregres-
sive models for time series forecasting [23, 1, 5, 6] or training deep
neural networks to implicitly learn the changing glucose level pat-
terns [16, 17, 4, 24]. Neural network architectures such as LSTM
have been used successfully for many time series forecasting prob-
lems [10, 8, 7, 19, 15], but require large amounts of training data.
This is a challenge for BG forecasting, as it is time consuming and
can be infeasible to collect such massive datasets. However, there
are now large public datasets created by people with diabetes sharing
their own data, which we believe could be leveraged. In particular,
the open source artificial pancreas system (OAPS) [11], a collabora-
tive project led by people with T1D, has data donated by individuals
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using the system. To date, there is open source diabetes data avail-
able for more than 100 subjects, collected over a period of 1 – 4 years
(more than 1000 days worth of data for some individuals). This pa-
tient generated data is self-reported, noisy, heterogeneous, and irreg-
ularly sampled, but its much larger than the datasets routinely col-
lected in controlled studies.

We propose that large public datasets like OAPS can be used to
pretrain models, allowing deep learning to be used on smaller curated
datasets for forecasing BG. In particular, we show by augmenting and
distilling knowledge across models trained on data obtained from
different sources using RNN, we achieve an accuracy comparable
to that achieved by using OhioT1DM dataset alone for univariate
setting. We also compare the performance with multi-output setting
in which multiple BG values are estimated in the prediction horizon
simultaneously. The code is available at https://github.com/health-ai-
lab/BGLP BG forcasting.

2 Methodology

The task here is to forecast future values for BG. We compare single-
step and multi-output forecasting. In the single-step setting, a single
glucose value is estimated several minutes into the future, whereas
in multi-output forecasting several future values are estimated simul-
taneously to model the signal trajectory over the prediction horizon.
We begin by describing our time series forecasting approach, and
later discuss the dataset specific preprocessing.

2.1 Problem setup

We define the feature vector X0:t = {x0, x1, ..., xt} ∈ Rn with
n being the number of variables. We use only raw CGM values
and do not incorporate additional features like carbohydrate intake
and insulin dosage. We also have a corresponding output time series
X ′

t+1:t+h = {x′
t+1, x

′
t+2, . . . , x

′
t+h} ∈ R representing multiple fu-

ture glucose values across a given prediction horizon (PH) of 30 and
60 minutes. As CGM data is recorded at a frequency of 5 minutes, a
PH of 30 and 60 minutes will lead to h = 6 and h = 12 samples,
respectively. For the single step setting, this target vector becomes
X ′

t+h = {x′
t+h} estimating only a single value h time instances in

the future. Multi-output forecasting, on the other hand, aims to es-
timate the joint probability p(X ′

t+1:t+h|X0:t) simultaneously. How-
ever, root mean square error (RMSE) was calculated by comparing
the actual future glucose level and the last future value in the esti-
mated multi-output sequence, to accurately measure the performance
of the forecasting model across the two output settings.



2.2 Learning Framework
Our proposed approach is to make glucose estimations for a small
dataset by pre-training an RNN on a larger dataset and then re-
training it using a smaller dataset. We compare four learning ap-
proaches for glucose forecasting, as shown in Fig.1: I) training and
testing an RNN on OhioT1DM only (red path), II) training an RNN
on OAPS dataset and testing on OhioT1DM without any re-training
(blue path), III) training an RNN on OAPS dataset, training again
OhioT1DM, and then testing on the OhioT1DM (purple path), and
IV) the pre-trained RNN model makes intermediate estimates called
soft predictions, which are given as target estimates to a student artifi-
cial neural network (ANN) model instead of the actual ground truth,
as done for a classification task in [2]. As shown in the figure, the
black edges from the two datasets to the teacher model show that it is
pre-trained using the source data (OAPS here) but uses target data for
making final predictions in Approach II, for re-training in Approach
III, and making soft estimations in Approach IV (mimic learning),
thus always having access to the two datasets.
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Figure 1: Four learning pipelines to estimate blood glucose levels in
OhioT1DM test data.

2.3 Network Architecture
We use a vanilla RNN with a single hidden layer, H(t) with 32 units,
followed by a fully-connected output layer O(t). This was used as
the teacher model in Approaches II, III and IV and trained on the
source patient-generated data. In Approach I where no teacher model
was involved, the RNN was used as a student model trained only on
the target OhioT1DM dataset to observe the effects of using datasets
of different sizes and from different sources with the same network
architecture. In Approach IV, a teacher RNN model trained on OAPS
was used to teach a student ANN model using OhioT1DM data to
study the effects of knowledge distillation between different kinds of
networks. We use a simple, fully-connected ANN with a single hid-
den layer with 32 units. The number of units for both RNN and ANN
were chosen after trying and testing [28, 32, 64, 128] and optimiz-
ing for the least RMSE. The output layer O(t) predicts the glucose

value(s) 30 or 60 minutes into the future depending on the PH and
the output setting (single-step or multi-output).

2.4 Training models

The teacher model was trained on OAPS dataset which was pre-
processed the same way as OhioT1DM, as discussed in Section
4. Early stopping was used to halt the training process if valida-
tion loss was not improving significantly, with the maximum num-
ber of epochs being 1000 with a batch size of 248 and 128 for
OAPS and OhioT1DM, proportional to size of each dataset. Glo-
rot normal initialization [9] was used to initialize the weight matrix.
For the OhioT1DM dataset, the same training configurations (maxi-
mum epochs, batch size, initialization technique etc.) were used with
all the learning approaches (i.e. student, teacher, retrained teacher,
teacher-student) for a fair comparison. The experiments for Ap-
proach I, III and IV were repeated 10 times and the average RMSE
and MAE was recorded for each subject, along with the standard de-
viation as presented in the Section 5.

3 Data

We aim to evaluate the impact of using a large noisy dataset for im-
proving forecasting in a smaller more controlled dataset. The larger
(source) dataset from OAPS [20] was used to pre-train the model
before it was trained on OhioT1DM [12] (target), which is much
smaller in terms of the total number of subjects and days for each.

3.1 OAPS

The collection of OAPS data started in 2015 as part of an initiative
to make APS technology more accessible and transparent for people
with T1D and to enable them to create their own customized AP sys-
tems. Participants can voluntarily donate their data, including glu-
cose levels recorded via CGM, insulin basal and bolus rates, carbs
intake, physical activity, and other physiological data. Researchers
can gain access to this dataset free of charge, provided they share
their insights and research findings with the public within a reason-
able frame of time [21]. For this work, we used a subset of the dataset
from individuals with multiple calendar years of data (55 people to-
tal, 320±158.3 days of data on average). Since this data is largely
self-reported, it is noisy, irregularly sampled, and heterogeneous in
terms of the variables recorded, but because of its sheer size, it is
highly useful for pre-training a robust machine learning model for
accurate BG forecasting.

3.2 OhioT1DM

The training data consists of 12 subjects: six from the OhioT1DM
dataset shared in 2018 for the First BGLP Challenge (Group I)[13],
and six from the second BGLP Challenge 2020 (Group II)[12]. The
validation and test samples are drawn from the last 10 days of data for
subjects in Group I and Group II, respectively. The dataset contains
around 8 weeks of data for 20 variables including raw CGM values,
insulin basal and boluses, carbohydrate intake, exercise, and sleep.

4 Data pre-processing

For both OAPS and OhioT1DM, we use four recorded variables and
one attribute derived from the raw glucose values. The list of features



used in the experiments includes raw CGM values (glucose level, in-
sulin basal rate (basal and temp basal), bolus amount (bolus), carbs
intake (meal), and difference between consecutive glucose values
calculated during data pre-processing (glucose diff ). The first step
in data pre-processing was to synchronize the multi-modality data
by generating a single timestamp data field based on the timestamps
for each of the four fields, generating an irregularly sampled multi-
variate time series.

In OAPS dataset, there were two types of gaps present in the data,
first where both timestamp and glucose values were missing, and sec-
ond where the timestamp was recorded but the corresponding glu-
cose value was missing. In OhioT1DM, missing glucose values were
identified once the multi-modality data was synchronized since basal,
bolus, and meals are not recorded at the same 5-minute frequency as
glucose levels. When there was missing glucose data for more than
25 consecutive minutes, these times were not used during training.
Each data segment (series of points not separated by gap longer than
25 minutes) was then imputed and windowed separately to maintain
temporal continuity in the data.

For the rest of the data, which may contain shorter gaps, we used
linear interpolation to impute missing glucose values in training data.
Missing values in test data were imputed by extrapolation to avoid
using data from the future. Basal rates were imputed with forward
filling, meaning replacing missing values with the last recorded basal
rate, since the value is only recorded when it changes and thus miss-
ing values mean the last recorded one is still active. However, if
the field “temp basal”, recording temporary basal infusion rate, was
present for a given set of timestamps, it was used to replace the
recorded basal rate [12] by evenly distributing the rate across the
time duration which was divided into 5-minute intervals, as imple-
mented in [14, 22]. Bolus rates were imputed in a similar manner
by calculating the rate for every 5-minute interval and distributing it
evenly across the specified duration, and was set to 0 when it was not
recorded, thereby indicating that insulin was not bolused for those
time instances. Similarly, the data field “meal” which recorded the
amount of carbohydrate intake was set to 0 when it was missing.

In addition to missing data, the sensors are also noisy, leading to
sudden changes in glucose levels, which can cause high variance in
the learned model. To remove these spikes, the signal was passed
through a median filter with a window size of 5 samples, as in [25].
This was only done for training data and not for the validation and
test sets to test robustness of the model.

A sliding window was used to split the data into fixed sized se-
quences for further downstream analysis. There are three parameters
for the moving window configuration: history window size (number
of past samples to use for forecasting), prediction horizon (PH) and
output window (how far into the future and how many future values
to predict), and stride (number of samples to skip while sliding the
window). An hour (12 samples) of past values were used to predict
the glucose levels 30 and 60 minutes into the future (PH = 30, 60)
with a unit stride, which means overlapping windows were used to
partition the data.

In OhioT1DM train and test data, the raw CGM values range from
70 – 275 mg/dl and 75 – 290 mg/dl on average, respectively. To en-
sure that values of all the features were in the same range, insulin
basal, bolus rates and carbs intake were normalized based on the
minimum and maximum value of glucose levels using Min-Max Nor-
malization.

5 Experiments

5.1 Experimental set up

The last ten days of data for subjects with ID 559, 563, 570, 575, 588
and 591 were used as validation set and test set was sampled from
data for subjects 540, 544, 552, 567, 584, 596. The processing steps
for the test data included linear extrapolation for imputing missing
values and normalization. The test data was not passed through a
median filter like the training set to see how robust the trained models
were to unseen, noisy data. We use root mean square error (RMSE)
and mean absolute error (MAE) to compare the predicted values with
the actual ground truth to evaluate the model. MAE and RMSE can
be expressed as,

MAE =
1

n

n∑
n=1

|yi − ŷi| (1)

RMSE =

√√√√ 1

n

n∑
n=1

(yi − ŷi)
2 (2)

where yi is true glucose level and ŷi is estimated glucose level,
both measured in mg/dl. We repeated the experiments 10 times and
calculated the average RMSE and MAE for each subject across the
ten trials. We also report the best, worst and mean RMSE (MAE)
across all the subjects for each of the four pipelines using both single-
step and multi-output models.

5.2 Results

Table 1: RMSE (MAE) for single-step forecasting with different
learning pipelines for a PH of 30 minutes.

(a) Single-step

Subject ID I II III IV

540 19.55 (14.00) 20.32 (14.60) 20.36 (14.69) 20.46 (14.81)
544 16.56 (11.51) 17.84 (12.51) 17.50 (12.20) 17.92 (12.53)
552 15.04 (11.14) 16.17 (11.90) 15.72 (11.63) 16.20 (12.06)
567 23.07 (14.67) 24.09 (15.38) 23.91 (15.32) 24.74 (15.65)
584 25.19 (16.16) 26.47 (16.88) 26.97 (16.65) 26.83 (16.84)
596 15.85 (10.98) 17.24 (12.06) 16.50 (11.52) 17.50 (12.12)

Best 15.04 (11.14) 16.17 (11.90) 15.72 (11.63) 16.20 (12.06)
Worst 25.19 (16.16) 26.47 (16.88) 26.97 (16.65) 26.83 (16.84)
Average 19.21 (13.07) 20.36 (13.89) 20.16 (13.67) 20.61 (14.00)

(b) Multi-output

Subject ID I II III IV

540 20.30 (14.64) 20.41 (14.77) 20.36 (14.68) 20.55 (15.18)
544 17.61 (12.19) 18.07 (12.59) 17.68 (12.23) 18.41 (12.91)
552 15.68 (11.57) 15.98 (11.74) 15.66 (11.54) 16.06 (12.08)
567 23.94 (15.29) 24.88 (15.58) 23.66 (15.08) 24.47 (15.55)
584 26.61 (16.65) 26.29 (16.71) 25.82 (16.43) 26.70 (17.01)
596 16.46 (11.43) 17.17 (11.86) 16.54 (16.54) 17.57 (12.21)

Best 15.68 (11.57) 15.98 (11.74) 15.66 (11.54) 17.57 (12.21)
Worst 26.61 (16.65) 26.29 (16.71) 25.82 (16.43) 26.70 (17.01)
Average 20.10 (13.63) 20.46 (13.87) 19.95 (13.57) 20.63 (14.16)

I: Student model only, II: Teacher model without re-training,

III: Teacher model with re-training, IV: Mimic learning (teacher + student model)

The results for a PH of 30 and 60 minutes are shown in Tables 1
and 2, respectively.



Overall, approach I achieved the lowest RMSE (MAE) with 19.21
(13.07) for a PH of 30 minutes and 31.77 (23.09) for PH = 60 min-
utes. In this approach an RNN was trained only using the OhioT1DM
data, using raw CGM values. The worst performance was from ap-
proach IV, where estimations made by a teacher model pre-trained on
OpenAPS dataset were given as ground truth to student ANN model
for training on OhioT1DM, as shown in Tables 1a and 2a. This ap-
proach did not improve the forecast accuracy as it did in [2]. It might
be because [2] used this technique for a classification task of mor-
tality prediction which involved predicting hard labels and evaluated
performance using misclassification error instead of estimating con-
tinuous valued deviations from the ground truth as is the case in BG
forecasting.

For BG forecasting using multi-output model, all approaches per-
formed equally well, with approach I, II, and IV (student model,
teacher and teacher student model) giving the same RMSE on aver-
age. For approach II, the error did not worsen significantly, show-
ing that pre-trained models can be used for making forecasts for
OhioT1DM data in real-time, without having to set aside a portion
of the dataset for retraining the model, an important consideration
for smaller datasets. However, the RMSE improved slightly for ap-
proach II when the teacher model was retrained.

Approach IV

Table 2: RMSE (MAE) for single-step forecasting with different
learning pipelines for a PH of 60 minutes.

(a) Single-step

Subject ID I II III IV

540 33.94 (25.40) 35.54 (26.74) 35.16 (26.94) 35.84 (27.35)
544 27.79 (20.34) 31.07 (22.45) 30.79 (22.84) 31.23 (22.69)
552 26.68 (20.15) 28.36 (21.08) 27.99 (21.33) 28.54 (21.53)
567 37.99 (26.50) 39.89 (27.76) 40.63 (28.47) 39.57 (28.09)
584 37.47 (27.00) 39.74 (27.87) 39.40 (27.60) 39.36 (27.85)
596 26.72 (19.12) 28.41 (20.42) 27.89 (20.31) 28.75 (20.83)

Best 26.68 (20.15) 28.36 (21.08) 27.89 (20.31) 28.54 (21.53)
Worst 37.99 (26.50) 39.89 (27.76) 40.63 (28.47) 39.57 (28.09)
Average 31.77 (23.09) 33.84 (24.39) 33.64 (24.58) 33.88 (24.72)

(b) Multi-output

Subject ID I II III IV

540 35.23 (26.94) 35.32 (26.99) 35.33 (27.06) 35.66 (27.05)
544 30.68 (22.83) 31.17 (22.74) 30.73 (22.79) 31.23 (22.84)
552 28.22 (21.57) 28.57 (21.56) 28.13 (21.43) 29.23 (21.98)
567 39.53 (28.03) 39.07 (27.95) 39.32 (21.43) 41.33 (28.57)
584 39.60(27.71) 39.43 (27.91) 39.43 (21.43) 39.07 (27.37)
596 27.92 (20.27) 28.48 (20.55) 28.13 (20.42) 28.81 (20.81)

Best 27.92 (20.27) 28.48 (20.55) 28.13 (20.42) 28.81 (20.81)
Worst 39.60 (27.71) 39.43 (27.91) 39.43 (21.43) 41.33 (28.57)
Average 33.53 (24.56) 33.67 (24.62) 33.516 (24.52) 34.22 (24.77)

I: Student model only, II: Teacher model without re-training,

III: Teacher model with re-training, IV: Mimic learning (teacher + student model)

6 Conclusion
In this work we have compared four different learning strategies for
BG forecasting using two different datasets. We have shown that
an RNN model pre-trained on a bigger dataset such as OpenAPS
can be used directly to do BG forecasting for a smaller dataset like
OhioT1DM when using CGM data only. We predicted BG levels 30
and 60 minutes into the future using single-step and multi-output
models, using univariate BG data. Overall, a single-step RNN trained

only on univariate data from OhioT1DM dataset achieved the least
RMSE of 19.21 and 31.77 mg/dl for a PH of 30 and 60 minutes,
respectively.
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