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Abstract—Wearable sensor technology has made it possible
to gain insight into dietary activity, learning not only when
people are eating, but identifying fine-grained behaviors such
as chews per minute, and causes of food choices. This may
enable interventions to maintain health and assist individuals
with chronic diseases such as diabetes (e.g. by providing insulin
dosing assistance). However, existing work on dietary monitoring
has focused on identifying meal times, rather than fine grained
behavior such as chewing. A key barrier is the difficulty of
obtaining granular ground truth. In free-living environments
it is difficult to obtain the high-quality video needed, and
annotating large datasets is labor intensive and does not scale
well. To address this, we introduce a new multi-stage initializa-
tion approach for Stochastic Variational Deep Kernel Learning
(SVDKL) that enables learning from data with a mix of coarse
labels (meal times) and granular ones (chews, intakes). Our
approach outperforms the state of the art on both free-living
and laboratory datasets, with 84% recall and 67% precision
for detecting chews compared to prior results of 73% precision
and 34% recall on the same data. Ultimately, our work may
enable more types of human activity recognition from real-world
environments at a lower cost.

I. INTRODUCTION

Nutrition is essential for maintaining health and managing
many chronic conditions such as diabetes, and much work in
nutritional epidemiology aims to uncover how specific foods
are linked to health. However unlike physical activity, which
can be monitored in daily life with many consumer devices, it
has remained difficult to obtain long-term large scale dietary
data. With such data, though, it may be possible to learn
how specific foods affect blood glucose in individuals with
diabetes, and how meal features such as chewing speed relate
to bodyweight. Doing this requires not only finding meal
periods, but identifying foods consumed and other granular
components of eating such as chewing.

Existing methods for automated dietary monitoring (ADM),
such as those based on body-worn audio and motion sensors
[1], [2], have mainly focused on identifying meal periods.
While these works have high accuracy for identifying meal
times, and have been used in both controlled and free-living
(FL) environments [3], they provide insight into only one as-
pect of diet. In recent years, ADM has expanded to identifying
foods consumed [4] and other aspects of nutrition such as fluid
intake [5]. However a core challenge remains: as these works

all use supervised learning, they require ground truth labels.
As ADM moves outside the lab to identify activity in the
environments of daily life and with large diverse populations,
obtaining highly detailed labels is a significant barrier. Deep
learning has excelled at other time series classification tasks
[6], but dietary datasets tend to be small and imbalanced,
with few eating events during an entire day of data. Further,
individuals vary significantly in their behavior, making it
important to leverage personalized data when available [7].

To address this we introduce a new approach that leverages
data with highly granular (e.g. chews, intakes) and coarse
(e.g. meal times) labels for classification of granular eating
activities. FL data lacks detailed ground truth but provides
insight into a wider variety of eating behavior, while lab data
is generally smaller but with more trustworthy labels. We
introduce init-SVDKL, an initialization procedure for Stochas-
tic Variational Deep Kernel Learning (SVDKL) [8]. While
SVDKL learns temporal dependencies (e.g. a food intake is
likely to be followed by chewing), it cannot naturally make
use of data with different label granularities or consider data
relevance in its training. Our extension, init-SVDKL, makes
use of individual training data and makes the model more
likely to converge in fewer epochs. We evaluate this approach
on multimodality (audio, motion) sensor data from free-living
(coarse ground truth) and laboratory (granular ground truth)
environments [7], [9]. On the lab data, our approach signifi-
cantly increases recall of granular events (84% chew, 78% food
intake, 88% drink intake) compared to prior work on this data
(34%, 26% and 19% respectively) [9], with similar or higher
precision. On FL data, we significantly increase precision.

II. RELATED WORK

ADM has used a variety of body-worn and environmental
sensors to detect eating behaviors. Body-worn microphones
[1] and motion sensors (mounted on the head [10] or wrist)
[2] have been used to detect eating periods or activities such
as chews. While microphones can pick up on chewing, and
motion sensors can be used to find intakes, multiple sensing
modalities are needed to capture all activities [9], and to iden-
tify food type and amount consumed [11]. This information
could be used to guide insulin dosing for individuals with
diabetes by linking it to an artificial pancreas. Image-based



approaches such as with photos taken by users or by ego-
centric cameras can be used to identify meal periods and food
type consumed [12], [13], but they cannot be used in real time
to identify the fine-grained behaviors we aim to infer.

All sensor types have been used in both lab and FL
environments, but the types of ground truth available in each
differ significantly. Labs can be outfitted with video cameras
and semi-wild studies can set up mobile cameras [14], but this
can change participant behavior [15] and could pose privacy
concerns in FL. Further, it is labor intensive to annotate such
video, making it challenging to collect large-scale datasets
with fine-grained ground truth. As a result, most prior work
focuses on identifying meal periods, which can be logged
by participants, and fine-grained activities such as chewing
have been studied mainly in lab. This means that FL accuracy
is highly dependent on finding the beginning and end times
of a meal (both of which may have noisy ground truth, due
to logging delays or omissions) and this approach precludes
identification of individual intakes and eating events such as
chewing. Prior work [4] has shown that it is possible to
label intakes with foods consumed in unconstrained settings
with unconstrained food choices, but it relied on correctly
identifying the intakes and the pattern of chews that follow
them. Thus to fully realize the potential for automatically
created meal logs and understanding of fine-grained eating
behavior, we need approaches that do not require large sets of
finely labeled training data.

III. METHODS

We propose a novel training method that classifies micro
events (e.g. chews) during macro events (e.g. meals) in time
series data and allows learning from data labeled at both
levels of granularity. We focus on learning from dietary data
collected from lab (annotated with fine-grained ground truth),
and free-living (annotated at a coarse level of granularity)
environments. Our approach may be applied to many human
activity recognition tasks where data is labeled at varying
levels of granularity, reducing labeling costs. Below we briefly
overview SVDKL before discussing the components of our
initialization procedure and finally the full pipeline.

A. SVDKL
We build on SVDKL as it is robust to missingness, learns

temporal dependencies, and can accurately perform multi-class
classification [8]. SVDKL uses a combination of a deep neural
network (DNN) and multiple Gaussian Processes (GPs), one
per feature, to do multiclass classification. The DNN is used
for feature reduction and the GPs are used to learn patterns
within the data. SVDKL has been shown to improve the state
of the art in image classification on digits such as MNIST and
CIFAR10, but it has not been extended to time-series data, nor
to problems where training data may vary in relevance. In the
following sections we discuss how we extend SVDKL.

B. Notation
ADM and activity recognition often use a mix of data from

other individuals (impersonal data) and from the individual

Fig. 1. Initialization ordering used in our experiments.

whose activities are being classified (personal data). Personal
data can significantly improve results, but we often face a
choice between personal data with coarse grained annotations
and impersonal data with finer grained labels. For the ADM
task in this paper, macro labels are meal start and end times
and micro labels are events that occur within a meal.

Data thus falls into four categories: [personal, impersonal]
× [macro, micro]. The micro events are: discrete intake (I),
continuous intake (Q), and chew (C). An I event has a single
timepoint, such as when taking a bite of food. A Q event
has a duration, and thus captures continuous events such as
sipping soup. The only macro event here is “meal,” which
encompasses all eating and drinking (e.g. snacks, drinks).

C. Model initialization

Prior work has shown that pre-training can increase model
accuracy compared to learning on an unordered set of data.
We propose using multiple initialization stages, similar to
hyperparameter tuning, guided by the structure of ADM. For
the data used here we have three dimensions to consider:
label granularity [micro, macro], personalization [personal,
impersonal], and relevance [eating, non-eating]. In this dataset,
all lab data has micro labels and all FL data has only macro
labels. By relevance we consider whether data is during a meal
(eating) or outside of meals (non-eating). Non-meal data is
useful for training a classifier to distinguish eating from the
other activities that may be confounded with it, but given the
class imbalance found in real-world data (where most of a day
is not spent eating), both types of data should not be given
the same weight. Figure 1 shows our proposed ordering for
initializing the model. We begin with micro-labelled data (lab).
Within that category, we order data by relevance, beginning
with personal lab eating, personal lab non-eating, and finally
impersonal lab eating data. The rationale is that the model
first learns micro meal events before learning to distinguish
between meal and non-meal activity. Next, we use macro-
labeled data (FL), beginning first with personal data (eating
then non-eating) and finally impersonal data.

D. init-SVDKL

We now augment SVDKL with multiple initialization stages
based on our ranking of the relevance of the data. These
partitions are task specific, however, we expect that for other
tasks sequencing the data by label type [micro, macro], and
then within that by personalization [personal, impersonal] and
then relevance [eating, non-eating]. To train on these multiple
disjoint datasets, we use the output of training on one data set



as the initialization before training on the next dataset. Thus
we begin by training an SVDKL on the most relevant data,
then we use the parameters learned as initialization and train
an SVDKL on the next most relevant data, until the least, and
then finally on the training data.

E. Multi-pass approach

Our approach can misclassify certain events based on the
nulls and other events that are outside macro events. A solution
to this is to use a multi-pass approach: first classify micro
events, combine the micro events to create macro events, and
then classify micro events during only these macro events.

IV. EXPERIMENTS

We test init-SVDKL on dietary datasets collected in the
lab and in FL environments and evaluate it across multiple
initializations and data orderings. We compare init-SVDKL
to baselines used in previous work on these datasets [7], [9]
and the deep learning baselines of long short-term memory
(LSTM) and SVDKL. We further investigate the effect of
initialization that uses only lab data and using both lab and
FL data. We show that even though the FL data is noisy and
coarsely labelled, our approach uses it to improve accuracy on
detecting micro events in lab data, outperforming prior work
and initialization using only lab data.

A. Datasets

We use multimodality datasets from laboratory and free
living environments that have been described in prior work.

Lab [9]: 6 subjects (2 female, 4 male) aged 18-35 partici-
pated in two 6-hour data collection sessions. In total, 59 hours
of data was recorded with 5.4 hours of eating across 30 meals.

FL [7]: 5 out of 6 lab participants (aged 18-35; 2 female, 4
male) participated in two data collection sessions (≈12 hours
each day) during their normal lives. In total 110.5 hours of
data was recorded with 8.4 hours of eating across 30 meals.
Data was also collected from 6 new participants aged 20-73
over either 2 days (5 participants) or 5 days (1 participants)
during daily life. In total, 144.2 hours of data was recorded
with 14.6 hours of eating across 51 meals. Thus we have 11
participants and 81 FL meals.

B. Sensors and processing

1) Sensors: We use the following multimodality sensors:
Audio: A custom earbud with 2 microphones (1 in-ear and

1 external) recorded audio data at 44.1 kHz. Two microphones
were used for noise cancellation as described in [9]. Data was
then down-sampled to 16 kHz.

Motion: Using an Android smartwatch (LG G Watch) on
each wrist, 9-axis IMU data was recorded at a rate of 15Hz.

2) Feature extraction: Based on previous work on this data
[7], [9], we extract the same features. We segment the raw
motion data into 5s windows with a 100ms step size and
raw audio data into 200ms frames with a 20ms step size and
then extract audio (energy, spectral flux, zero-cross rate, 11
MFCC coefficients, centroid, spread, skewness, and kurtosis)

and motion (mean, covariance, derivative, coefficients of 4th
order polynomial fit to acceleration values, zero crossing rate
of high-pass filtered acceleration components, and the standard
deviation of the zero-crossing intervals) features.

3) Raw data: Deep learning methods usually perform best
with raw data. Thus for SVDKL, init-SVDKL, and a version
of LSTM, we segment both the raw motion data and audio data
into non-overlapping 70ms windows, to ensure a maximum of
one event per window.

4) Ground truth: Lab data was previously annotated with
granular eating activities from video recordings. We use the
chew, intake, and drink annotations as the other categories
(e.g. swallow) are less prevalent. During training and testing,
we create macro events by combining micro events with a gap
of less than 1 minute, ensuring that all meals have either one
second of drink or at least one chew and intake. FL data was
annotated using participant logs of meal start and end times.

C. Evaluation and baselines

We compare our approach against random forest (used
extensively in prior work), LSTM (as a deep learning baseline)
and SVDKL without our initialization procedure. For all
methods we use leave one session out (LOSO) evaluation,
training on all but the target session and testing on the held
out one. To train on solely macro-labelled data (FL), we apply
a classifier trained on micro data (Lab) to label micro-events
in FL, then combine the lab data and micro-labeled FL data.
While the labels may be noisy, they still help the classifiers
avoid overfitting to the more homogeneous lab data.

1) Random Forest (RF): We use the same settings as prior
work, with an RF classifier for each micro event with 100
trees in lab data, and added a meal classifier for FL data [7].

2) LSTM: As LSTM can perform better with raw data, we
test LSTM (features), which uses the extracted features and
LSTM (raw), which uses only the raw data. We use a stateful
LSTM, with a batch size of 1024, categorical crossentropy
loss, a softmax activation function, and train for 300 epochs.

3) SVDKL and init-SVDKL: Both SVDKL and init-
SVDKL use raw data with a batch size of 1024 for 300
epochs. We use a Deep Kernel Learning feature extractor
with fully connected layers and the following architecture:
d → 1000 → 1000 → 500 → 50 → 4, where d is the size
of the original raw data for each time window. We train one
GP per DKL feature and combine them using a softmax layer.
A Cholesky variational distribution is used with a multitask
variational strategy through grid interpolation. The covariance
matrix is calculated with a scale kernel on top of an RBF
kernel with a smoothed box prior. We use stochastic gradient
descent as the optimizer, and Variational Evidence Lower
Bound as the loss function. An init-SVDKL is an SVDKL that
uses section III-D to initialize all parameters before training.

We evaluate the precision and recall of micro events using
the same tolerances as for previous work on this dataset:
250ms for chew, 500ms for intake, and 1000ms for drink [9]
and evaluate meals by comparing the overlap between ground
truth and inferred eating times at a level of deci-seconds [7].



TABLE I
PRECISION (PREC) AND RECALL FOR LAB DATASET. FOR EACH TASK, THE BEST RESULT IS BOLDED. MPA IS DESCRIBED IN SECTION III-E

Chew Intake Drink Meal

Prec. Recall Prec. Recall Prec. Recall Prec. Recall F1
RF 73 34 44 26 47 19 85 92 89
LSTM (features) 68 26 39 27 51 27 88 87 87
LSTM (raw) 70 42 38 33 50 35 87 86 86
SVDKL 45 70 38 56 23 66 76 77 76
init-SVDKL[Lab] 52 71 45 60 35 88 91 88 89
init-SVDKL[Lab+FL] 69 83 55 69 44 88 90 89 89
init-SVDKL[Lab+FL] MPA 67 84 64 78 45 88 91 85 88

TABLE II
COMPARISON OF METHODS PRECISION, RECALL, AND F1 SCORE FOR

MEALS ON FL. FOR EACH TASK, THE BEST RESULT IS BOLDED.

Meal

Precision Recall F1
RF 28 85 42
LSTM (features) 45 84 59
LSTM (raw) 52 83 64
SVDKL 49 82 62
init-SVDKL[Lab] 53 84 65
init-SVDKL[Lab+FL] 63 88 74

V. RESULTS

Table I shows detailed results on the lab data, comparing
the baselines and initialization approaches. First, while RF
has high precision and recall at detecting meals, it has the
lowest recall for individual events. This is because identifying
meal periods depends mainly on finding events at the start
and end of a meal. For chews and intakes, our approach has
an increase of ≥ 50% over RF. One difference is that our
multi-pass approach (detecting eating first, then micro events
within meals) significantly increases recall of intakes, by better
identifying the start of a meal. Lastly, our approach leads to a
large increase in recall of drink intakes. While RF only detects
19%, and LSTM finds 35%, we detect 88% of drinking events.
Thus, the methods that achieve the best meal-level results
do not necessarily identify granular events most accurately,
and our approach significantly improves on the accuracy of
SVDKL, allowing detection of granular eating activities.

Table II shows FL results. While we have only meal-level
ground truth, our approach increases both precision and recall
on this data. This is mainly due to detecting shorter meals
that LSTM and RF tended to miss or classify as a longer
duration, though init-SVDKL did still miss the shortest meal
(10.6 seconds of eating chocolate).

VI. CONCLUSION

We improve upon the state of the art in detecting eating
behavior, using a new initialization procedure for SVDKL
that better uses data of varying relevance, personalization, and
label granularity. On laboratory data with ground truth we have
significantly higher recall for detecting chewing (84% versus
34%), intakes (78% versus 26%), and drinking (88% versus

19%) with similar or higher precision and similar meal-level
F1 scores. On FL data, we significantly increase precision
over prior work, with strictly higher recall. Future work is
needed to tune parameters to ensure even the briefest snacks
are detected, and to determine how best to construct macro
events from micro ones.
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