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The amount of observational data available for research is growing rapidly with the rise of electronic
health records and patient-generated data. However, these data bring new challenges, as data collected
outside controlled environments and generated for purposes other than research may be error-prone,
biased, or systematically missing. Analysis of these data requires methods that are robust to such chal-
lenges, yet methods for causal inference currently only handle uncertainty at the level of causal relation-
ships - rather than variables or specific observations. In contrast, we develop a new approach for causal
inference from time series data that allows uncertainty at the level of individual data points, so that infer-
ences depend more strongly on variables and individual observations that are more certain. In the limit, a
completely uncertain variable will be treated as if it were not measured. Using simulated data we demon-
strate that the approach is more accurate than the state of the art, making substantially fewer false dis-
coveries. Finally, we apply the method to a unique set of data collected from 17 individuals with type 1
diabetes mellitus (T1DM) in free-living conditions over 72 h where glucose levels, insulin dosing, physical
activity and sleep are measured using body-worn sensors. These data often have high rates of error that
vary across time, but we are able to uncover the relationships such as that between anaerobic activity and
hyperglycemia. Ultimately, better modeling of uncertainty may enable better translation of methods to

free-living conditions, as well as better use of noisy and uncertain EHR data.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Chronic diseases like diabetes, hypertension, and heart disease
account for most U.S. deaths each year [1], and unlike acute ill-
nesses they are primarily managed not by clinicians but by
patients themselves. Blood glucose management in people with
type 1 diabetes mellitus (T1DM) imposes a particularly significant
cost on time and attention. Patients make frequent (~hourly) deci-
sions about the timing and dosing of insulin to manage their blood
glucose with infrequent (~semiannually) feedback from clinicians
while having to account for many factors that affect glucose
including physical activity, meals, and illness. Managing blood glu-
cose is key to avoiding secondary complications like stroke, but
requires constant vigilance from patients with little external feed-
back and support.

Yet, patients now generate massive amounts of health data
through tracking symptoms and disease progression, uploading
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sensor data into patient portals, and sharing information with
one another through social networks like PatientsLikeMe [2]. These
patient-generated data may fill in information gaps between med-
ical visits and help engage patients but there have been concerns
about data quality and how to integrate patient-generated data
into care without overloading clinicians [3]. Tests with providers,
though, found the primary question was whether the data pro-
vided actionable information [4].

Most work has focused on how these data can improve encoun-
ters with providers, but continuously-collected data from body-
worn sensors and devices such as continuous glucose monitors
(CGMs), insulin pumps, and activity monitors could be used as
input to a patient-centered decision support system, which would
reduce the burden placed on patients with diabetes and other
chronic diseases. While CGMs allow continuous recording of glu-
cose data, these and other sensors can have errors, and imperfect
use in real-world settings leads to new challenges (e.g. samples
contaminated by inadequate hand-washing, loss of connectivity).
Further, not all sensors can be worn during all activities (e.g. swim-
ming) or may be removed by a patient for other reasons, leading to
missing data. These issues are present in many types of
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observational biomedical data, yet this uncertainty is rarely taken
into account when analyzing the data (e.g. ICD9 codes, from the
International Classification of Diseases, Ninth Revision, are often
used as proxies for diagnoses), impeding the development of
patient-centered technologies.

We aim to demonstrate the utility of data collected in
free-living environments from consumer-grade sensors for finding
causal relationships. We propose that these data may be able to
reproduce findings from highly controlled studies (at lower cost),
while also enabling observation of a wider variety of scenarios than
observed in the lab (e.g. activity from running to catch a bus or ath-
letic competition). While we aim specifically to infer causes to
enable accurate prediction of glucose trends and effective inter-
ventions to correct unhealthy highs and lows, there is not yet a
method that can weight different observations of a variable differ-
ently during inference (based on the certainty of measurements).
We hypothesize, though, that this is critical for robust inferences
from such data. That is, if we are sure that a particular measure-
ment of glucose indicates hypoglycemia, that measurement should
be weighted more strongly in finding causes of hypoglycemia than
a measurement that has an equal chance of being within the nor-
mal range. Since errors and the values of glucose measurements
are not evenly distributed throughout the range, and devices have
significant error rates, ignoring this underlying uncertainty of the
data can lead to false positives and false negatives. In many cases
information on error rates is available, but is not routinely incorpo-
rated into inference. For example, studies evaluate accuracy of con-
tinuous glucose monitors in various scenarios (e.g. [5,6]) and
models of this error have been developed (e.g. [7,8]), leading to
the ability to determine which data points may be untrustworthy
but not yet the ability to use that information in causal inference.

To handle this, we extend a causal inference method to handle
uncertain data, by separating the observation of an event or mea-
surement of a variable’s value from the underlying truth of what
occurred. This ensures that conclusions drawn from highly uncer-
tain measurements are given less weight than those drawn from
reliable measurements and a completely uninformative variable
will be treated as missing, instead of propagating errors. The meth-
ods are applied to data collected from 17 individuals with TIDM in
free-living conditions, using a variety of body-worn sensors. We
demonstrate that these patient-generated data can be successfully
used to uncover some causes of unhealthy glucose excursions in
people with diabetes — but only when uncertainty of the data is
properly accounted for.

This paper makes two main contributions: (1) we extend causal
inference methods to better handle uncertainty in observational
data; (2) we present a novel set of free-living data from people
with diabetes that is available for research use (https://idash.
ucsd.edu). We demonstrate the utility of the method through rig-
orous comparison on simulated data and its successful application
to the free-living data.

2. Background
2.1. Diabetes

Chronic diseases are rising in prevalence, necessitating tools
that can provide feedback directly to individuals, in contrast to
the clinician-centered decision-support paradigm. Diabetes in par-
ticular affects over 29 million people in the U.S. (over 9% of the
population) [9] and the CDC estimates that if current trends con-
tinue, this will grow to 33% of the U.S. population by 2050 [10].
The annual cost of diabetes in the U.S., including medical costs
and loss of work, was estimated at over $245 billion in 2012, a

41% increase over the 2007 estimate of $174 billion [11]. People
with diabetes incur substantial out-of-pocket costs, impeding
access to preventative medical services [12]. Diabetes puts patients
at risk for many other diseases, and is the primary cause of chronic
kidney disease [13], a leading cause of amputations and blindness
[14], and a risk factor for heart disease and stroke [15].

T1DM is a chronic autoimmune condition characterized by an
inability to produce insulin and is currently an unpreventable,
incurable, disease requiring life-long insulin therapy. Since compli-
cations are primarily from long-term high or low blood sugar
(hyper- or hypoglycemia), they may be preventable with better
glucose management [16]. However this requires patients to fre-
quently test their blood glucose and determine whether to admin-
ister insulin (to correct high glucose levels) or ingest carbohydrates
(to counter falling glucose levels). While glucose has traditionally
been measured before and after meals with fingerstick monitors,
these discrete samples cannot provide feedback on trends. CGMs
instead provide constant feedback on glucose levels, potentially
enabling better management [17].

Artificial pancreas systems aim to create closed-loop systems,
linking the CGM and insulin pump with control algorithms that
regulate glucose without a patient’s intervention. These systems
have demonstrated increases in glucose within normal ranges
(euglycemia) and reductions in hypoglycemia [18], but most tests
are conducted overnight in hospitals when glucose control is sim-
pler and they have not been routinely used in ambulatory circum-
stances where meals, physical activity, and daily life can confound
results. Outpatient studies have primarily focused on demonstrat-
ing the safety of these systems [19]. The problem is further compli-
cated by the input to the control algorithms: CGMs measure
glucose in the interstitial fluid between cells, rather than in blood.
This can lead to a delayed signal that is a shifted and transformed
version of blood glucose [20], requiring strategies to accurately
reconstruct it [21]. Further, while sensors do not have perfect accu-
racy (due to factors such as noise or calibration errors), under-
standing real-world performance and factors affecting it has been
a significant area of work [5,6]. However, it remains to incorporate
what is known about error rates into inference.

Data from body-worn sensors (e.g. heart rate and activity mon-
itors) and mobile apps may provide a more complete picture of the
causes of changes in glucose and fill in information gaps. Physical
activity can improve glycemic control [22] and increase insulin
sensitivity [23], but creates challenges in glucose management
since its effects are a function of the activity context (training vs.
competition), duration and intensity, and even time of day [24],
and physical activity includes both formal exercise and things like
running to catch a bus [25]. Recent articles have assessed activity
monitors and phone apps in laboratory and free-living conditions,
finding that step counts are accurate, but other activity measures
may differ from research-grade devices [26,27]. However, it is
unclear whether devices are more accurate at tracking changes
from a given individual’s baseline. More fundamentally, little work
has been done to assess causes of hypo- and hyperglycemia in an
integrated way in realistic settings (rather than understanding
one piece of the puzzle at a time in controlled experiments). To this
end, we show that consumer-grade sensors can be used to monitor
factors that affect glucose, and with proper analysis can do so accu-
rately enough to find causes of changes in glycemia and eventually,
to better inform patients. Further, our publicly available dataset,
collected in real-world environments, may enable researchers con-
ducting lab-based studies to understand how these relate to
uncontrolled environments and may facilitate computational
researchers developing new algorithms to handle the challenges
of these data.


https://idash.ucsd.edu
https://idash.ucsd.edu

N. Heintzman, S. Kleinberg /Journal of Biomedical Informatics 63 (2016) 259-268 261

2.2. Causal inference

Many types of uncertain observational data are used for
research, including EHRs and patient generated data streams, but
there have been few approaches that address the specific chal-
lenges of using these uncertain data to find causal relationships.
This is critical for ensuring that interventions, such as to lower
blood glucose, will be effective. Data mining methods have
addressed uncertainty due to missing data with imputation of
missing values [28,29]. Multiple imputation handles this by imput-
ing multiple values for each missing instance, and aggregating
results. However, this is addressing a somewhat different problem
than the one we discuss here, which is uncertainty in observed val-
ues, and incorporating that information into causal inference.
Other approaches exist for weighting multiple observed measure-
ments, such as when combining the results of many studies in a
meta-analysis. Inverse-variance weighting, for example, gives less
weight to variables or studies as their variance increases [30].
However, in our application variance in a measure is not necessar-
ily a proxy for certainty, and this approach can’t be used to assign
different weights to different observations of a single variable
within an individual (as variance cannot be calculated for each
individual observation). Other methods exist for directly repre-
senting uncertainty, including probability intervals [31], possibility
theory [32], and belief functions [33], but these have yet to be
incorporated into causal inference from time series and generally
assume one begins with a known structure. Thus, these methods
do not yet address our task: causal inference from uncertain data.

While causal inference is necessary, current methods do not
account for the types of uncertainty we face. We need be able to
use that a variable’s measurement at, say, 2:00 pm on a particular
day is less certain than that at 8:00 pm when inferring causal
structures. Variable and time-dependent error rates are available
in many forms. In the case of glucose measurement, comparison
of a CGM to a fingerstick monitor can uncover mismatches
between values at specific times, and device error rates can provide
prior information on both overall accuracy of a variable’s measure-
ment and factors affecting the accuracy of specific measurements
(e.g. sensor used past recommended duration). We also cannot
assume that overall the incorrect observations will average out,
as errors may not be evenly distributed across either a variable’s
range or throughout time. For example, if a new sensor for a
CGM is always inserted on Sunday, values on Sunday will always
be less accurate than those on Monday, which will be an even
greater problem if this coincides with the day a user always
engages in vigorous exercise. Graphical model-based methods such
as Bayesian networks [34,35] or dynamic Bayesian networks
(DBNs) [36] aim to find probabilistic models representing a sys-
tem’s causal structure. Efforts to incorporate uncertainty into these
methods mainly address uncertainty at the level of independence
relations in static networks [37,38] or in other types of prior
knowledge about a structure [39] rather than at the level of vari-
ables and individual observations during structure inference. The
primary type of uncertainty faced here is when constraints are in
conflict, and the methods enable inference to use the more reliable
constraints in such cases. Thus, the uncertainty is in the model as a
whole rather than in a specific data point. This is the difference
between representing uncertainty in whether a particular common
cause screens off its effects and whether specific instances of the
common cause are trustworthy observations. These approaches
also face challenges in inferring complex relationships and their
timing. Granger causality [40] aims to determine whether one time
series is predictive of another, but its more accurate multivariate
form is too computationally complex to be used with many vari-
ables over many time lags, while the bivariate form may erro-
neously find relationships between effects of a common cause.

We are not aware of any methods for finding complex temporal
relationships from data where variables have differing levels of
uncertainty that may also differ across time. It is critical to incor-
porate this uncertainty to avoid biasing inference. For example,
during periods of high uncertainty, an individual may make more
measurements of their blood glucose. In a frequency-based
approach, these measurements would then be overrepresented in
the data, while incorporating uncertainty in individual observa-
tions enables these to contribute only a weak signal. Further, that
these measurements have higher uncertainty can be automatically
inferred based on the unusual measurement density. We build on
the approach of [41], where each relationship has an associated
time window (that can be inferred from the data) rather than a dis-
crete time lag as with DBNs or Granger causality. In body-worn
sensor data, even if the underlying relationship has a single lag,
errors and gaps in measurements make it unlikely that this would
be observed as such. In the approach we build on, relationships and
their timing are inferred directly from the data so that one may
begin by testing for relationships between all variables and ele-
vated glucose in 10-100 min and ultimately find that vigorous
activity leads to high glucose in 5-30 min with probability at least
0.3. We augment this approach to handle patient-generated data
by incorporating uncertainty in measurements, which allows each
observation of each variable to have an associated probability,
rather than simply being true or false. Ultimately this approach
can be used more broadly to represent uncertainty such as that
of imputed values for missing data, diagnoses (single ICD9 code
versus multiple pieces of evidence), and concepts extracted from
free text.

3. Causal inference

Many causal inference methods take a probabilistic approach,
with probabilities based on frequencies, so a conditional probabil-
ity such as P(e|c) is defined as the number of occurrences of c A e
divided by the number of times c is true. Each observation has
the same impact on the calculation - yet some variables are more
error-prone than others and individual measurements may further
differ. We now discuss how to use information on observation
uncertainty during inference, so that when finding causes of high
blood glucose, timepoints that are less likely instances of hypo-
glycemia will have less of an impact. We begin with a brief over-
view of the inference method being extended, then discuss the
incorporation of uncertainty into the calculations and the compu-
tational complexity of the approach.

3.1. Background

The causal inference approach is based on that developed in
[41], which separates causes from correlations using a calculation
of a cause’s average impact on an effect’s probability. We briefly
review the inference approach here and refer the reader to the
prior work for more details. Each relationship is represented by a
probabilistic temporal logic formula, enabling inference of rela-
tionships involving conjunctions, durations, and sequences of
events, along with their timing, without prior knowledge [41].
For example, “vigorous activity (v) leads to (~~) high glucose (g)
in 5-30 min with probability at least 0.3,” is represented by:

>5,<30
vl & (M

The significance of cause c for effect e, where X is the set of all
variables that raise the effect’s probability, is:
P(e|c A x) — P(e|~c A X) 2)
X\ c| ’

Earg(C,€) =
xeX\c
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where ¢ and x are potential causes of the form c-»>"<*e and
x ~>1"<5" e_After each potential cause occurs, e is thus most likely
to occur in the time window [r,s] and [, s'] respectively. Note that
0 <r<s, and if r =s, this is simply a single lag. Thus if c is only
an effect of a common cause, it will make a small difference
when the true cause is held fixed. Timing subscripts are omitted
here, but the probabilities refer to e occurring at a time after x
and c such that either could have caused it (i.e. their windows
overlap).

Formally, the (in)significant causes are defined as follows. The
terminology is significant/insignificant rather than genuine/spuri-
ous, as seemingly significant causes may be due to bias or hidden
confounders and insignificant causes may actually just be weak
genuine causes.

Definition 1. A potential cause c of an effect e is an ¢-insignificant
cause of e if &4,¢(c,€) < &.

Definition 2. A potential cause c of an effect e that is not an
e-insignificant cause of e is an &-significant or just-so cause of e.

This can then be treated as a hypothesis testing problem, where
one aims to control the false discovery rate (FDR) or false negative
rate (FNR) and can use this rate to choose a threshold for &.

The key assumptions required are that causal relationships are
stationary across time (that is, the system is governed by one
underlying causal structure); and to find genuine causes and not
simply statistically significant causal hypotheses, all common
causes of pairs of variables must be measured.

This approach has been compared against others (BNs, DBNs,
Granger) on data from multiple domains (finance, biology)
[42,43], with significantly fewer false discoveries on time series
data and accurate inference of time windows without prior knowl-
edge. To discover time windows, the approach essentially uses an
iterative refinement of the time windows (expanding, shrinking,
and shifting them earlier and later), greedily aiming to increase
the causal significance score. This has been proven to converge to
the true windows, assuming data are sampled regularly, and was
shown to recover the correct time windows on simulated data
where ground truth is known [41]. The key point for inference of
timing is that the method does not simply accept or reject
hypotheses proposed by a user, but rather infers both the relation-
ship and its true timing (which might be different than that ini-
tially tested) directly from the data.

Inference has two phases (1) generating hypotheses and find-
ing potential causes, and (2) assessing the significance of poten-
tial causes. In the simplest case hypotheses are pairwise
relationships between all variables across a set of time windows,
but one may iteratively test more complex formulas. At a mini-
mum, a potential cause must occur before and raise the probabil-
ity of an effect. To distinguish between confounding due to a
common cause and a potentially significant causal relationship,
the difference in probability of the effect is averaged in the pres-
ence and absence of the cause, holding fixed other potential
causes.

3.2. Intuition behind adding uncertainty

Using the method described in the previous section, probabili-
ties are calculated using the frequencies with which the various
conjunctions were observed. Thus P(e|c AX) could be calculated
with #(c Ae AX)/#(c AX), maKing &gy

Z #(cnxne)  #(=crxne)
XeX  #(cAX) F#(CAX) (3)
X\ cl '

Eavg(C,€) =

Each instance of ¢ Ax adds equally to the sum, even if some
observations are less certain than others. Yet, even though we
know that CGM readings after a new sensor is inserted and near
the end of a sensor’s life are less accurate than others, this is not
used in standard frequency-based estimates of probability. We
aim to be able to use this type of information during inference,
so that when finding causes of high blood glucose, these time-
points will have less of an impact. Note that while probabilities cal-
culated from larger samples (e.g. 500/1000) have higher precision
than those from smaller samples (e.g. 1/2) we do not yet incorpo-
rate this information. However, it may be possible to do so using
the same approach of incorporating probabilities of probabilities.

Instead of each observed instance having the same weight in
this count, we propose to sum their probabilities. Intuitively this
means that if there is an observation of c A x, but it is very uncer-
tain (low probability), then whether or not e is observed after, it
will not have as large an impact on the calculation as more reliable
observations will. On the other hand, this enables one to not sim-
ply throw away data points that may potentially be outliers or
errors (since distinguishing between an outlying value and an
important extreme value in a critically ill patient can be challeng-
ing). To simplify calculations we assume the uncertainty in each
observation of each variable is independent. However, this may
not hold when they are measured by a single device (such as a
9-axis motion sensor). The relationship between error in subse-
quent observations of a single variable, though, can be handled
by the prior model. For example, our belief in the correctness of
a blood glucose measurement may depend on when it was inserted
(i.e. if it still needs to be calibrated or is past its lifespan). However,
this does not require a model of dependent error in the measure-
ments, but rather prior beliefs that account for time since sensor
insertion.

3.3. Notation

Before reformulating the approach described to handle uncer-
tain observations, we briefly introduce some new notation. Where
i is a timepoint in a series of observations T, P(x;) is the posterior
probability of proposition x at that specific actual time (and is con-
ditioned on the data and our prior beliefs about the reliability of
measurement). For discrete and certain data, this is 1 if it is
observed and 0 otherwise.

The probability of x at each time in window [i,j] is:

P(XM”_]') IP(Xi/\XH] AN /\Xj)‘ (4)

When uncertainties are independent then this calculation sim-
plifies to:

P(xi.j) = [] P(xo)- (5)
]

kelij|

The probability of x occurring at least once in [i,j] is:

P(Xi\/.,,j) =1- HP(ﬁxk). (6)

kelij]

3.4. Calculating causal impact with uncertainty

To incorporate uncertainty into inference, we now replace the
frequency-based counts of Eq. (3) with ones based on sums of
probabilities. Due to the time windows associated with each rela-
tionship (as shown in Eq. (1)), this is more complex than replacing
each event with a single probability. When calculating P(e|c A x) in
the certain case, we iterate over instances of c and x such that the
time windows where they may cause e overlap, summing how
often this occurs. Previously e either occurred at least once in the
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window or did not. Now we may have multiple observations of e
with varying probabilities. If e is observed twice, once with
P(e) = 0.1 and once with P(e) = 0.6, our belief in the occurrence
of e during that window should then be somewhat greater than
0.6. We now aim to calculate the probability of e happening at least
once during the overlap of time windows.

In the uncertain case, we must ask what counts as an instance of
c Ax? Instead of determining whether there merely exists an
instance of x such that its time window overlaps c’s, we now calcu-
late the probability of this happening at least once. Thus if the
potential relationships are c¢-»>'<%2¢, and x-»>2<2¢, and c is
observed at t = 2, then the constraints are as shown in Fig. 1. First,
the window for e to be caused by c is [3,4], as shown with the
shaded bar. Then, for x to cause an instance of e (which it can only
do in exactly two time units) in conjunction with ¢, it must occur
at either time 1 (t+1—2) or time 2 (t+ 2 — 2). If for example
P(x1) = 0 while P(x,) # 0, then the shaded window would be solely
the timepoint t = 4.

More generally, the conditional probabilities in Eq. (3) are now
replaced with the following calculations. First, P(e|jc Ax) is
updated:

> oeerP(Ce, Xivjs €kv..)
P(ejc A x) = =£ 7
( | ) ZIETP(CHXN..J') ( )

The window [i,j] is the set of times where x may occur and have
a time window that overlaps c’s, and is given by:

[Lj]=[r+t) =5, (s+1) 7] (8)

Analogously, the window [k, ] is the set of times after c A x
where either could have caused e and is defined by:

(k,l] = [max(x; + 1,7+ t), min(x, + ', s + t)], 9)

where x; is the first time in [i,j] where P(x;) # 0 and x, is the last.

In calculating the significance score in Eq. (7) we calculate the
probability of an effect when a cause and other condition are pre-
sent. We compare this to the probability of the effect when the
cause is absent and other condition is held fixed, P(e|-c A x), mod-
ifying the equation to incorporate uncertainty as follows:

Y terP(=Cen..h, X, € 1)
P(e|—c A x) = &L ) 10
e ) EteTP(ﬁCgA...mxr) (10)

The window [g, h] is then the set of times such that ¢ occurring
at these would lead to its window overlapping x’s:

gh=[r"+t)-s(+t)-r1]. 11

The window for e is now just the window of x after its occur-
rence at time t':

K =]t +7,t+5] (12)

We now iterate over instances of x, finding the probability of
there being no instance of c that overlaps with x. Unlike the previ-
ous case we have a conjunction rather than a disjunction (i.e.
P(—Cg A =Cgi1 A ... A—Ch)).

In Fig. 2 is an illustration of the timing constraints for one obser-
vation of c at time t, with potential causal relationships ¢ ~»>"<5 e,
and x ~»>"<" e, Shown in grey to the right of c is the time window
[t+71,t+s]. Then, for r =1 =2 and s =§' = 4, the corresponding
window [i,j] where x’s window may overlap c’s is shown. Diagonal
lines indicate the timespan for which x is observed with nonzero
probability. Finally, the window [k, [] for e is indicated below these.

Assuming uncertainties are independent across variables and
observations of each variable, Eq. (7) simplifies to:

- Etgrp(ct)P(xiv...‘)P(ekv...l)
Plele n%) = =5 Be P ) (13)

Fig. 1. Example illustrating timing constraints for two causal relationships.

k[ el

Fig. 2. Illustration of time windows.

and Eq. (10) to:

Definition 3. The significance of cause c for effect e, where X is the
set of all factors that raise the probability of e is:

_ erXgX(C7 e)

R (15)
where
8x(C7 e) — ZteTP(Ct)P(Xi\/,..j)P(ekvml)

>eerP(Co)P(Xiv.j)
 2oeerP(5Cen..n)P(Xe)P(ky..1)
> terP(—Cen.n)P(Xt)
In the certain case, where a variable’s probability is one when

observed and zero otherwise, this reduces to the frequency-based
calculation.

(16)

3.4.1. Complexity
The complexity of testing pairwise relationships between N
variables in a time series of length T in the certain case (once all

logical sub-formulas have been checked) is O(N*T). Adding uncer-
tainty does not change the theoretical bounds, but increases the
computation time in practice. Usually an event is not occurring
at every timepoint, and the various calculations can be done for
only the times where the event is true. However, a proposition
now has a probability at each timepoint and all of these times will
be incorporated in the calculation so we are always iterating over
the T timepoints. Note that N of the computations are indepen-
dent and can be done in parallel.

3.5. Uses for uncertainty

We can now enable probabilistic discretization, by defining dis-
tributions, rather than bins, mapping values to states. This is criti-
cal, as many methods cannot use continuous data and often the
boundaries between states are not precisely known (or there is a
transition that is not captured by a binary mapping). Incorporating
probabilities captures this uncertainty while allowing the benefits
of discretization. Now instead of mapping each value of a variable
to one of a set of discrete states, one can map each value to the
probability of a particular state. For instance, when glucose moves
from 69 to 70 mg/dl there is not a sudden shift from hypo- to eug-
lycemia. Instead, a set of three probability distributions (one each
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for low, normal, and high glucose) can be created so that each
value of blood glucose has a probability of being in each of these
states.

Probabilities can be used more generally to incorporate prior
knowledge (such as about device accuracy), deal with missing data,
and account for error. Probabilities can indicate the likelihood of a
variable taking a particular value given that it is recorded to repre-
sent measurement error. Thus one can incorporate device uncer-
tainty and bias (e.g. a device is more likely to give a false positive
than a false negative). For missing data, imputation of a single value
can lead to many errors, while multiple imputation (finding a set of
values for a variable and averaging results across inferences with
each) increases computational complexity [44]. Instead one can
determine for each missing value the probability of a variable being
in each of its possible states. This enables multiple imputation
while not increasing computational complexity, as inference is still
done only once (rather than for each imputed value).

When variables are measured at different timescales (but all
theoretically measurable values are present), gaps are often too
large for imputation. One can determine in a variable-specific
way the probability of the last value being accurate as a function
of time after its measurement. For instance, measurements of
weight may be very reliable for a period of days while heart rate
quickly becomes uninformative.

Finally, ICD9 and other diagnosis codes are often used as indica-
tors for whether a patient has a particular condition, but errors and
omissions are common [45] and it can be difficult to figure out
which patients have a chronic disease and when it started based
on the EHR alone [46]. By incorporating uncertainty, though, we
can represent that a patient with multiple pieces of evidence
(ICD9 code, medications, symptoms in text) is more likely to have,
say, heart failure, than a patient with only a single diagnosis code.
Further, as new evidence is amassed, this probability can increase
or decrease, ultimately letting us represent diagnoses as probabil-
ity trajectories based on the evidence at each timepoint.

3.6. Example

We now illustrate the approach with a simple example where
the observations themselves are considered trustworthy, but the
mapping from continuous values to discrete states is uncertain.
This example demonstrates how the calculations proceed and
how proper handling of uncertainty can improve causal inference.

Fig. 3 shows a subset of a time series with three variables: ¢ (a
meal high in carbohydrates), e (moderate exercise) and g (blood
glucose). The variables ¢ and e are discrete, while g is continuous.
In bold are values of g that would be considered instances of eug-
lycemia (normal blood glucose) using the traditional range of
[70,120]. The values for P(g,) show a mapping of glucose values
to the probability of euglycemia (glucose in normal range), which
captures the smooth transition between states, allowing that a
value of 135 is still much more likely to be an instance of eug-
lycemia than one of 158.

First, using the traditional discretization and calculating the
impact of e on g, at one time unit holding fixed c, we find:

0 0
P(g,le,c) — P(g,|-e,c) =5 -5 =0. (17)
Here it seems e has no impact at all on g,.. Incorporating uncertainty
into the calculation, using P(g,), we instead have the following.
Note that P(c) and P(e) are either one or zero at each time, and
the window is exactly one time unit, so we simply use P(g,) at each
time, instead of calculating the probability across a time window.

~099+0.95 0.09+0.01

P(gle.C) — P(g,|e.c) = -

11 =0.92.

C [ ] [ ] [ ] [ ]

(& [ ] [ ] [ ]

g9 120135120125 158 165 160 150 140
P(g,) 1 99 1 1 .09 .01 .05 .50 .95

; \ \ \ \ \
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Fig. 3. Example time series of two discrete variables (c,e) and glucose (g), which is
mapped to probability of euglycemia (P(g,)).

Instead of no impact, we now find that exercise combined with
a meal has a significant impact on glucose as compared to a meal
alone. In contrast, values close to normal (135 and 140) following
“c and e” were indistinguishable from the higher values following
“c and not e” (158 and 165) when strictly discretizing according to
a fixed window. By assigning probabilities, we can capture this dis-
tinction in the continuous values.

4. Data collection
4.1. Simulated data

To evaluate the inference method we simulated data with
known ground truth and varied the uncertainty in measurements.
The goal of these experiments is to determine whether causal rela-
tionships can be accurately inferred from uncertain data with the
proposed method, and determine how the level of uncertainty
affects inference accuracy. Our primary evaluation is the false dis-
covery rate and false non-discovery rate (FDR and FNR).

We randomly generated 5 causal structures with 10 or 20 rela-
tionships among 25 variables (including chains, cycles, self loops,
etc.), with each relationship having a lag of one time unit. Fig. 4
shows one example structure. We did not generate relationships
with longer lags or windows to isolate the effect of uncertainty
and noise.

At each time an event (variable) may occur spontaneously
(probability = 0.1) or may occur if one of its causes occurred at
the previous time (probability = 0.9). This yields strong relation-
ships, enabling us to distinguish between uncertain observations
and weak relationships.

After generating the ground-truth data (20,000 timepoints), we
added uncertainty in two ways.

4.1.1. Static uncertainty

Here, each variable in each dataset was independently assigned
a randomly generated probability of being correctly reported (i.e.
output says true if it occurred). Probabilities were in the range
[p,1] with p € {0.55,0.75,0.85,0.9,0.95,1}. Thus there may be
certain observations of only cause or effect and not both. In all,
60 datasets of this type were generated (5 structures, 6 probability
ranges, 2 runs for each combination).

4.1.2. Varied uncertainty

A key feature of our method is incorporating observation-
specific uncertainty. To test this, we generated 8 datasets (2 struc-
tures, 2 probability ranges, 2 runs each) where the probability of
each observation (rather than variable) being correctly reported
was randomly chosen within [0.55,1] and [0.9,1]. That is, if a vari-
able is actually true at a given time (e.g. individual has hyper-
glycemia), we flip a weighted coin to determine whether the
output reports true or false. With probabilities in [0.9,1], most
observations are correct, while in the wider probability range there
will be many more instances of erroneous output.
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Fig. 4. One of five randomly generated causal structures.

4.2. Real-world data

We aim to demonstrate both the feasibility of continuous phys-
iologic monitoring in individuals with TIDM in free-living condi-
tions and that these data can be used to gain insight into causes
of changes in glycemia. Our primary evaluation is face validity of
the relationships, assessing how they relate to prior knowledge.
The Diabetes Management Integrated Technology Research Initia-
tive (DMITRI) study collected data from 17 participants (10 male,
7 female) ages 19-61 with TIDM. Participants were active, with
all exercising at least 2-4 times per week, and most (13 of 17)
>4 times per week. Average duration of diabetes and HbA1c were
14.9+11.0 years and 7.3 + 1.3% respectively. Data are available
through iDASH (https://idash.ucsd.edu). Participants were moni-
tored over approximately 72 h plus a baseline assessment, though
we focus on the sensor and device data. The continuously collected
data and body-worn sensors include: glucose (Dexcom 7+ CGM),
insulin dosing (insulin pump), activity status (BodyMedia Sense-
Wear, Respironics Actiwatch), heart rate (Polar chest strap), tem-
perature (SenseWear), and sleep (Zeo Personal Sleep Coach). Data
collection frequencies differed between devices, so all were synced
to the 5-min intervals of the CGM.

Each continuous-valued variable was discretized, with a proba-
bilistic approach used when possible. Data were prepared as
follows:

Activity: The SenseWear activity monitor outputs the fraction of
each five-minute interval spent in sedentary, moderate, vigorous,
or very vigorous activity based on METs (metabolic equivalents),!
using ranges of under 3.0 (sedentary), 3.0-6.0 (moderate), 6.0-9.0
(vigorous) and above 9.0 (very vigorous). Since the values range from

! These measurements correlate well with actual energy expenditure, though
studies have been limited in scope [47,48].

0 to 1 and the values for a given interval sum to 1, they were used as
probabilities of the corresponding activity during that five-minute
interval.

Glucose measurements are often volatile and the usual approach
of calling values in the range [70,120] (mg/dL) normal (eug-
lycemia), values below hypoglycemia, and values above hyper-
glycemia may not accurately distinguish true hypo/
hyperglycemic episodes in people with diabetes. So discretizing
68 mg/dL as “low glucose” and 70 mg/dL as “normal” overstates
the confidence in these measurements [49]. Instead, we defined a
probability distribution based on this range that ensures a value
of, say, 68 mg/dL, still has a high probability of corresponding to
euglycemia. Distributions corresponding to hypo- and hyper-
glycemia were created by subtracting the euglycemia distribution
from 1, as shown in Fig. 5. A data point may correspond to multiple
categories, with different probabilities, and a possible but unlikely
hyperglycemic episode will not overly influence determination of
factors affecting hyperglycemia.

Heart rate (HR) zones, to determine intensity of activity, were
calculated for each subject using age and baseline resting heart
rate. Maximum HR (HRmax) was estimated, using a standard
approach, as 220-age, making the zones: X «+ (HRmax — HRrest)+
HRrest, where X was in the interval [.5,.85,1]. HR below 90 was
defined as resting, and between 90 beats per minute and 50% of
HRmayx, elevated.

Insulin pump data is broken into two types: basal rate (contin-
uous insulin dosing) and bolus (discrete infusion). We used pres-
ence or absence of a bolus at each time.

Sleep: From the Zeo sleep monitor, we recorded mode sleep
stage during each interval. The SenseWear activity monitor also
recorded percentage of each interval spent in sleep and percentage
lying down (each was treated as the probability of each activity
during that interval).

Temperature was treated similarly to glucose, with a probability
distribution of euthermia centered at 33 °C (as temperature was
measured on the surface of the skin), and declining rapidly above
and below. The result is three distributions corresponding to
hypo-, hyper-, and euthermia.

5. Results
5.1. Simulated data

We first validate the method using the simulated time series.
The proposed method used the known time lag for relationships
and actual probabilities for each variable. The cleanliness of the
synthetic data, meant the usual approach of fitting the null distri-
bution to the data to identify a threshold for ¢ could not be used
(the difference between the insignificant z-values, which were near
zero but skewed negative, and the significant ones was too great).
We instead used breaks in the distribution (e.g. when a fit to the
histogram of significance scores goes to zero), but this increases
the false negative rate, so performance can be improved with bet-
ter methods for choosing the threshold.

We compared results to those of DBNs using Banjo [50]. Using a
single lag and relatively small number of variables/timepoints
enabled exploration of a large portion of the search space (limiting
concerns about identifying a local minima with a large search
space). Parameters used were: simulated annealing with random
local moves, runtime of 1 h with 6 threads, and max parent count
(number of parents of a node) of 6.

Table 1 shows false discovery and false negative rates (FDR and
FNR) for each algorithm, by probability range (each being [p,1]
with p shown) for static uncertainty. Our FDR is lower at every
probability level, and increases to a max half that of DBNs. Our
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Fig. 5. Probabilistic discretization of blood glucose (bottom) and traditional step-
function (top), where values in [70,120] are considered euglycemia. Based on the
value reported by the CGM, probabilities of eu-, hyper- and hypoglycemia are
assigned.

method yields a higher FNR as noise increases, as highly uncertain
measurements will be given little weight. While the tradeoff
between FNR and FDR is specific to each problem and the associ-
ated costs, in this case the increasing FNR is by design. That is, a
completely uncertain variable should not be found as a cause or
effect of any other, and should be treated as if it were not measured
(i.e. latent). The FDR increases as uncertainty does, as this weakens
true relationships while increasing the number of spurious correla-
tions, so false positives make up a larger portion of the inferences
(as there are fewer inferences). While DBNs made no false nega-
tives in many cases (the true network was a subset of that
inferred), the FDR increased from 0.064 to 0.204 when going from
certain data (p=1) to a 5% error rate (p =0.95), and this is higher
than the FDR of our approach with uncertainty at 0.55 (.123).

Across all 8 datasets with variable uncertainty (varying by
observation), our approach had an FDR and FNR of zero. For DBNs,
the FNR was also zero, but the FDR was.048 and.032 for p = [0.55,1]
and [0.9,1] respectively, as shown in Table 2. Thus by giving less
weight to possibly erroneous measurements, we can separate the
signal from the noise. This is particularly important for our appli-
cation to T1DM, as relying more on certain data (e.g. values that
are surely hyperglycemic episodes when finding causes of such
excursions) may help overcome the substantial noise in glucose
measurements. DBNs fared much better with variable uncertainty
than with static uncertainty, as a consistently unreliable variable
severely reduces their accuracy.

5.2. Real-world diabetes data

Using the DMITRI dataset, we compared uncertain discretiza-
tion (e.g. each value mapped to probabilities of belonging to each
category) to traditional categorical discretization (e.g. glucose val-
ues in [70,120] are considered normal and above and below are
hyper- and hypoglycemia respectively). Using a data-driven
approach, we tested for causal relationships between all variables
and hypo-, hyper- and euglycemia over a series of candidate time
windows (5-15, 15-30, 30-45, and 45-60 min). As actual timings

Table 2
Comparison of causal inference with uncertain observation to DBNs on simulated
time series for varied levels of uncertainty, with varied uncertainty for each variable.

Method [0.9,1] [0.55,1]
FDR FNR FDR FNR
Uncertain 0 0 0 0
DBN 0.032 0 0.048 0

may be different, we used the approach of [41] to refine each win-
dow for each relationship, before recalculating the causal signifi-
cance scores with the final set of relationships.

Unsurprisingly, we found that glucose tended to remain high/
low/normal at a short timescale (i.e. being low causes glucose to
remain low). Using the proposed method we made another finding,
though: that very vigorous exercise as a significant cause of hyper-
glycemia. This finding was made separately using activity esti-
mates based on heart rate in 5-15 min (with estimated anaerobic
activity zones) and an activity monitor calculating METs (meta-
bolic equivalents) in 15-30 min, with both having fdr < 0.01. Heart
rate was somewhat more significant (&,, 0.32 vs. 0.29), because of
the specificity of the measurement. These relationships between
intense activity and hyperglycemia were the most significant at
all timescales by a wide margin (aside from those between the glu-
cose states and themselves), but did not reach statistical signifi-
cance in other time windows. This suggests that we identified
when the effect peaks, but it may occur over a longer timescale.
Further work with a larger sample is needed to confirm the timing.

While the data contain a limited number of glucose excursions
(deviations from euglycemia) and episodes of intense exercise, we
were able to find this relationship from only a few days of data col-
lected for 17 individuals. Hyperglycemia after anaerobic activity
has been previously identified in individuals with TIDM [51], giv-
ing us confidence in the methodology and sensor data quality. This
finding was not made from data discretized according to the tradi-
tional range (only the relationships between hypo/hypo, eu/eu, and
hyper/hyperglycemia were identified), demonstrating that incor-
porating uncertainty into discretization can improve inference
power in noisy data.

6. Discussion

Patients themselves make many chronic disease management
decisions during daily life rather than in the context of medical
treatment. Decision support systems have primarily focused on
clinicians, while patient-centered treatment has tried to remove
the need for active involvement (e.g. closed-loop glucose control).
Yet, many systems fail during translation from controlled environ-
ments to the real-world. We propose that (1) patient-generated
data are a viable and important data source for researchers and
(2) these data require specialized methods due to their specific
challenges. We report the development of a unique type 1 diabetes
dataset from free-living conditions and introduce a novel extension
of a causal inference method to handle uncertain data. These data
may potentially be used by researchers to uncover causes of
changes in glycemia and understand whether findings from

glr)r:;:rison of causal inference with uncertain observation to DBNs on simulated time series for varied levels of uncertainty, with static uncertainty for each variable.
Method 1 0.95 0.9 0.85 0.75 0.55
FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR
Uncertain .058 .089 .073 131 .098 138 126 263 123 .644 123 .644
DBN .064 0 204 0 231 0 .270 0 .286 0 272 181
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controlled laboratory environments translate to real-world
environments.

In contrast to existing work, which weights all data points
equally during causal inference we develop an approach that incor-
porate probabilities into traditionally frequency-based calculations
of causal significance. This enables representation of beliefs and
information such as error rates specific to each observation of a
variable, and was shown to lead to fewer false discoveries than
DBNs in data with simulated uncertainty. While the approach
may lead to more false negatives in theory (due to treating highly
uncertain variables as missing), in practice we showed that it can
increase power when dealing with noisy real-world data. Despite
the small sample size and few occurrences of hyperglycemia, by
incorporating knowledge of the uncertainty inherent in the data,
we were able to uncover the causal relationship between intense
exercise and hyperglycemia, using both heart rate data and activity
measured by METs. With a larger dataset, more causal inferences
may be possible.

The primary limitations of this work are the need for priors
about uncertainty, as well as the assumptions made about the
independence of error across variables. We assumed here that
the probability distributions and error rates were given as back-
ground knowledge, and while information from manufacturers
and research on device accuracy can provide this in some cases,
future work is needed on better estimating uncertainty for each
variable and observation. In particular, this could potentially be
identified in a data-driven way, by triangulating between multiple
measurements of a phenomenon (e.g. finding mismatch between
heart rate, location, and motion sensing), and combining data with
manufacturer-provided accuracy information. Similarly, many
devices contain multiple sensors and when one piece of the system
fails, others will too. Incorporating dependence in uncertainty will
be important for better handling such cases. Finally, one limitation
of our experimental work is the relatively small sample size, with
17 individuals over 3 days and lack of ground truth for measure-
ments, which did not allow us to infer or evaluate such models.

Direct representation of uncertainty in biomedical data may
enable better use of other data beyond that generated from
body-worn sensors. Work extracting phenotypes from EHRs may
benefit from allowing probabilistic diagnoses, where researchers
can represent the amount of evidence toward a diagnosis rather
than treating this as a binary categorization. For instance, a patient
with multiple medications for heart failure, multiple visits for the
condition, and heart failure on their problem list could be distin-
guished from patients with only a diagnosis code. Similarly, con-
cepts extracted from text often have ambiguous timings, so
instead of assigning a single time to an event, a probability distri-
bution over the likely times of occurrence better captures this
uncertainty.
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