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Abstract

Large-scale observational datasets are prevalent in
many areas of research, including biomedical in-
formatics, computational social science, and fi-
nance. However, our ability to use these data for
decision-making lags behind our ability to collect
and mine them. One reason for this is the lack
of methods for inferring the causal impact of rare
events. In cases such as the monitoring of contin-
uous data streams from intensive care patients, so-
cial media, or finance, though, rare events may in
fact be the most important ones — signaling criti-
cal changes in a patient’s status or trading volume.
While prior data mining approaches can identify
or predict rare events, they cannot determine their
impact, and probabilistic causal inference methods
fail to handle inference with infrequent events. In-
stead, we develop a new approach to finding the
causal impact of rare events that leverages the large
amount of data available to infer a model of a sys-
tem’s functioning and evaluates how rare events ex-
plain deviations from usual behavior. Using simu-
lated data, we evaluate the approach and compare it
against others, demonstrating that it can accurately
infer the effects of rare events.

1 Introduction

With the increasing availability of big data from the social
sciences, finance, health, and climatology among other areas,
rare events are increasingly common. Given the amount and
granularity of observations (ICU patients are monitored ev-
ery 5 seconds during their stays, Twitter users generate 12TB
of data per day and tick by tick stock data is at the scale of
milliseconds), it is often the case that we want to know not
only how a system works, but to explain changes from usual
functioning. This is particularly critical given the streaming
nature of many of these datasets, where the ultimate goal is to
monitor them in real-time in order to alert users when some-
thing unusual has occurred that they may be able to act on,
whether this is an adverse event for a patient, the potential for
political riots, or an arbitrage opportunity.

Analyzing large amounts of data to uncover rare events has
traditionally been a focus of data mining and machine learn-

ing efforts aimed at problems such as detecting credit card
fraud and network intrusions [Chandola et al., 2009]. To
act on this information, though, we need to know not just
that a rare event has occurred, but whether it will have an
impact on the functioning of a system. For example, doc-
tors and nurses in intensive care units (ICUs) are currently
overloaded with information from a large array of monitor-
ing systems, and want to know not only when something
out of the ordinary has occurred (when a patient is not con-
tinuing to function as expected) but that this is actionable
knowledge that will influence how they treat the patient.
The fact that a patient is having a seizure is not, for ex-
ample, useful information unless doctors know whether or
not the seizure will cause further harm (since treatment can
have severe side effects in critically ill patients). Thus we
need to determine which rare events are causal (rather than
say, outliers or measurement artifacts) and what their effects
are. However, causal inference methodologies [Pearl, 2000;
Granger, 1980] have primarily taken a probabilistic approach,
which is ineffective when dealing with rare events whose
probabilities cannot be calculated in a statistically significant
way.

This paper introduces a new method, ARC (assessment of
rare causes), that evaluates rare events by determining how
well they account for deviations from normal behavior (pre-
dicted by an inferred model). We demonstrate that this ap-
proach can find rare causes occurring as few as two times in
thousands of observations when they have a substantial im-
pact, and can in some cases identify even weak rare causes.

2 Background

The approach described here first requires inference of a
system’s usual behavior before quantifying deviations from
this and how they may be explained by a rare event. To
do this we build on efforts to infer complex causal rela-
tionships in time series data [Kleinberg and Mishra, 2009;
Kleinberg, 2012]. The idea is that instead of inferring a model
that explains all independencies in a set of data, we can accept
or reject each causal relationship individually with a measure
of its strength that is based on how much of an effect’s value
each cause accounts for. In this work we focus on continuous-
valued effects (which are prevalent in medicine), and use a
method that evaluates causal relationships using conditional
expectation rather than conditional probability [Kleinberg,



20111].
In this approach, cause and effect are represented as logical
formulas of the form:

¢ ~ZTSS (e > Ele]), 2.1)

which means that after c occurs, the value of e will be greater
than expected in between T and s time units. Note that ¢ and
e may themselves be complex logical formulas (such as con-
junctions or sequences of factors). Methods for testing these
formulas (based on model checking and verification [Chan et
al., 2005; Clarke et al., 1999]) in data are linear in the size
of the formula, allowing for efficient evaluation of potentially
complex relationships.

The basic idea of the approach is to generate a set of poten-
tial causes and then determine the causal significance of each
using the average difference in conditional expected value af-
ter holding fixed other potential causes of the same effect.

Definition 2.1. c is a potential cause of e if, with ¢ being
earlier than e: E[e|c] # Ele].

To determine the significance of a potential cause, c, for an
effect, e, we calculate:

> xex Elele Ax] — Ele[—c Ax]
IX\cl ’

where the set X is composed of potential causes of e. Note
that there are time windows associated with each relationship
between x and e, and ¢ and e (as shown in equation (2.1)), and
that ¢ /A x /\ e in this context means that the windows for ¢
and x’s occurrences at particular times overlap such that they
have a non-zero intersection and e occurs in that intersection.

We can now define significant and insignificant causes.
Note that the terminology used [Kleinberg, 2011; 2012] is
not genuine/spurious but rather insignificant/significant. An
insignificant cause may be either a spurious cause or simply
a very weak genuine one. Similarly, a significant cause can
only be guaranteed to be genuine in the case where (akin to
the assumptions made for BNs) all common causes of ¢ and
e are included in the set X (and one’s belief in whether it
is genuine should be proportional to their belief that this as-
sumption holds)'. In general, inferences from observational
data are best viewed as a targeted set of hypotheses to later be
validated experimentally.

Eavg(c,e) = (2.2)

Definition 2.2. A potential cause c of an effect e is an ¢-
insignificant cause of e if [eqvg(c, €)] < e.

Definition 2.3. A potential cause c of an effect e that is not an
e-insignificant cause of e is an e-significant or just-so cause
of e.

Intuitively the significance measure tells us, relative to
other possible pieces of information, how valuable c is for
determining the value of e. The larger €44, the more of €’s

"Note that in practice we avoid many spurious inferences due to
the inclusion of temporal information. In order to incorrectly find a
causal relationship between two effects of a hidden common cause,
one would have to regularly precede the other in a stable window
of time. Latent variables in the form of factors are included in the
simulated data developed here and in [Kleinberg, 2011].

value is explained by c. For instance, if ¢ and e are uncor-
related, this value will be near zero. On the other hand, if ¢
and e have a common cause, d, the value will be nonzero but
much lower than that for d. In this work the word “causes”
will be used as a shorthand, but should be interpreted in the
sense of e-significant.

After calculating the €44 values it remains to determine
a threshold for ¢ (to determine which values are statistically
significant). In the absence of genuine causal relationships,
these values follow a normal distribution (whose mean and
standard deviation can be inferred empirically [Efron, 2004]),
and methods for controlling the false discovery rate (FDR)
under multiple hypothesis testing can be used to find a thresh-
old at the desired FDR level [Efron, 2010].

3 Evaluating rare events

We now turn our attention to developing a new method for
causal inference with rare events in large-scale data. The gen-
eral approach is to use the large volume of data to infer how a
system normally functions and then determine whether events
not explained by this model can be explained by the occur-
rence of rare causes. There are three components of this pro-
cess: 1) inferring a model of usual functioning (as described
in the previous section); 2) determining for each variable how
much of its value at each measured instance is explained by
the model; and 3) calculating how explanatory the rare event
is when it occurs. We begin with a discussion of the rationale
behind the approach before discussing components 2 and 3 in
section 3.2.

3.1 Linking type and token

The basis for the approach developed here is the link between
type (also called general) and token (also called singular, or
actual) causality. Broadly, type-level relationships are ones
that describe the behavior of a system, such as side effects
of medications or a gene regulatory network. Token-level
relationships on the other hand relate to causes of particu-
lar events at specific points in time and space, such as the
cause of an individual’s cancer at age 42 or the U.S. reces-
sion that began in December 2007. The relationship between
these “levels” of causality has been studied primarily in phi-
losophy (focusing on the meaning of each and how they are
conceptually related), with much less attention in computer
science (exceptions include the work of Pearl and collabora-
tors [Halpern and Pearl, 2005; Hopkins and Pearl, 2007]).

It has been argued alternately that type-level relationships
are generalizations of token-level ones [Hausman, 2005], that
token-level cases are specific instances of type-level ones
[Woodward, 2005] and that these levels are distinct [Eells,
1991]. Regardless of what the true underlying relationship is
between type and token (or if there is one at all), we can make
use of the idea that a type-level relationship is inferred by
computational means specifically because it seems to be ob-
served many times [Kleinberg, 2012]. Thus, these type-level
relationships provide us with an expectation of what should
occur in individual instances (though these expectations may
not necessarily be fulfilled).

We exploit this link to aid in distinguishing between ex-
pected and unusual events, where instead of detecting sta-



tistical anomalies, we determine whether events are causally
explained given our prior inferences. While an event that is
fully explained by inferred type-level causes is not likely to be
an effect of a rare event, one that deviates significantly from
what is expected after its occurrences may be.

3.2 Calculating the impact of a rare event

The average difference in conditional expected value, shown
in equation (2.2), indicates what value of an effect should be
observed when a cause actually occurs. That is, if we have in-
ferred all of the causes of an effect, and assume their influence
is additive, we should be able to sum the €44 values of actu-
ally occurring causes at any given time in order to determine
what value of an effect will be observed. Holding fixed the
other potential influences (other possible causes) when calcu-
lating the average difference isolates each cause’s impact on
the effect. For example, if c ~2LL e with £a\,g(c, e) =5,
and where c is the only known cause of e, then the expected
value of e after each time c actually occurs is 5. Using this
approach, we can calculate how much of a variable’s value
at each observed time is not accounted for by the inferred
relationships. When the result is non-zero, this means that
there are influences other than the known causes, such as rare
events (that cannot be assessed using the probabilistic meth-
ods discussed) and unmeasured (latent) variables.

More formally, we define the unexplained value of a vari-
able as follows.

Definition 3.1. The average unexplained value of a
continuous-valued variable, e, is the average difference be-
tween its actual and expected values relative to a time series
T and set of type-level causes, R (inferred by the approach in
section 2). It is given by:

_ Zt et - E[et]
o #e ’

where #e is the number of measurements of e in T, ey is the
value of e measured at time t and we sum over all measured
values (t € T).

The expected value of e at time t, Eley], is defined as:

F—[et] = Z Eavg(aae)

acAy

ule) 3.1)

(3.2)

where each a is a type-level cause of e in R and

Ar={a:a~2"S% (e>Ele]) Aday it € [t—s, t—1])

3.3)
The set A is composed of causes of e that actually occur
before the instance of it at time t, consistent with their known
time windows (so that if ¢ causes e in one time unit, e is
preceded by cy—1).

The impact of a rare event cannot be well approximated
with €44 (equation (2.2)) as this measure relies on there be-
ing a sufficient number of occurrences of a particular cause,
¢, and its absence (or negation), —c, along with each x. Fur-
ther the calculation of €44 uses probabilities of more com-
plex events, namely the conjunction of multiple events. These
events will be at least as infrequent as ¢ and some may not be
observed at all.

Instead, to evaluate infrequent events we can compare the
average unexplained value of an effect after such an event’s
occurrence to the overall average. This approach enables cal-
culation of the impact of a rare event and determination of its
statistical significance without the need for frequency-based
probabilities. We define the average unexplained value of
one variable conditioned on the occurrence of another as fol-
lows. As with the inferred relationships, there is a hypothe-
sized time window? when the rare event may cause the effect,
where 1 < 1”7 < s” < oo, and 1"’ # oo.

Definition 3.2. The average conditional unexplained value

of a variable e given another variable v is the average dif-

ference between e’s actual and expected values after each in-
stance of v. It is given by:

Zt ey — Ele¢hv]
ulelv) = =t————,
(efv) #e A\ v

where the time window associated with v potentially causing

eis [r”, s"] and the times summed over are those where v has

occurred prior to t (thatis, t: eg Avyrn,t” € [t—1",t—s"]).

The conditional expected value of e at time t given v is

(3.4)

defined as:
Eletvl = ) eavglae) (3.5)
acAjf
where again each a is a type-level cause of e and:
Al ={a:a~>"S% (e > Ele])
Aday :t' eft—s,t—1]
AFver it elt—r",t—s"]h. (3.6)

This is similar to the unconditional unexplained value, but
we now sum the difference in expected versus actual value
over only the instances of e where the rare event v has oc-
curred in the window of time [r”, s”’] before the effect. The
number of instances of e/\v in the denominator is the number
of times e occurs after v.

The value u(e|v) in equation (3.4) allows us to compare the
overall amount of an effect that is unexplained to that that is
unexplained after the rare event. A rare event with no genuine
impact will lead to the same value as the overall average, en-
suring this approach does not incorrectly find a rare event to
be significant due to unmeasured causes or background con-
ditions, though statistically significant differences should still
be interpreted in the sense of being e-significant (rather than
genuine) for the same reasons discussed earlier. Note that this
approach can handle a non-rare latent common cause, due to
the comparison against the overall unexplained value. There
could potentially be cases with rare latent common causes,
but as discussed in section 2 to result in incorrect inferences
this requires stable ordering and timing of the common ef-
fects. Algorithms for inference follow directly from equa-
tions (3.1) and (3.4).

3.3 Computational complexity
Determining how much of a variable’s value is unexplained
(calculation of eq. (3.1)) is linear in the number of times it

20ther work has shown how to infer this time window without
any prior knowledge of it [Kleinberg, 2012].



occurs and bounded by the length of the observation series,
T. Evaluation of a rare event as a potential cause of a particu-
lar effect is linear in the number of times the rare event occurs
and by definition a rare event is infrequent. Testing whether
V rare events are causes of N variables is then O((V + T)N)
though the major component of this is the term TN. While
other approaches for inference of the normal model may be
used, the one discussed here is O(N3T), where N is the num-
ber of variables in the system and T is the length of the time
series (N2 of these computations are independent and can
proceed in parallel).

3.4 Example

To illustrate how this approach works, take the follow-
ing simplified example and sequence of observations:
c e e o ° e o

d o o o o ° °

e3 6 3 5108 3 3 7147 3 611 3 10
f . °

I ] ] ] ] ] ] ] ] ] ] ] ] ] ]
T T T T T T T T T T T T T T

0123456 78 9101112131415

Here c, d, and f are discrete variables and e is continuous.
The rare event, f, is shown occurring more frequently than
such an event ordinarily would in order to better illustrate
the calculations. The sequence shown is assumed to be part
of a much longer time series, from which the relationships
c ~2LSl e and d ~»21S! e were inferred. Assume it was
found that € 4y4(c,e) =4 and eqyg(d, e) = 3.

The expected value of e at a particular timepoint given that
both ¢ and d have occurred at the previous timepoint is the
sum of their influence: 7. If e instead has the value 10 (as at
time 4 above):

es—Eled =10—7 = 3. 3.7)

This means that 3 is how much of e’s value is “unexplained”
by what is known. It may be that e’s value is a function of its
causes plus a constant (i.e. 3), or that there are unmeasured
causes of it. At time 12, e is preceded by only c, making its
expected value 4. Since it takes the value 6, the difference is
2. Doing this for all instances of e yields the average of equa-
tion (3.1). For e in this sequence, removing the timepoints?
immediately after f, w(e) is 42/14 = 3.

To determine whether f is significant, we find w(elf), the
average unexplained value of e immediately after f and com-
pare this to the overall average. This value for instances fol-
lowing one time unit after f is (11 + 10)/2 = 10.5 since d
occurs before e at time 9 and no other causes occur right be-
fore e at time 15. Statistical techniques for hypothesis testing
can then be applied to determine whether such a difference is
significant. In this case the p-value using an unpaired t-test is

3As the length of the time series increases, this step is less im-
portant, as the few instances of the rare event will have less of an
impact on the overall average. Failing to do this, though, will only
lead to an underestimate of the rare event’s influence.

Probability | Exp. 4K | Act. 4K | Exp. 10K | Act. 10K

0.005 20 20.44 50 51.03
0.0025 10 9.88 25 24.41
0.0005 2 2.35 5 491

Table 1: Number of expected and mean actual occurrences of
each rare event in the 4,000 and 10,000 day time series.

significantly less than 0.01, so f does indeed make a signifi-
cant difference to e when it occurs. When a factor’s results
are hypothesized to be permanent, one may instead test how
well the event explains all future values rather than only those
immediately following it.

4 Experimental results

4.1 Simulated data

To validate the approach developed here and compare it to
other methods, it was applied to simulated financial time se-
ries data where two primary types of rare causes were em-
bedded. These are 1) causes that lead to a fixed increase in
the price changes of their effects; and 2) causes such that the
effect’s value is a function of the cause’s value. In both cases,
the data consist of 25 variables with five different causal
structures (two with 10 causal relationships in the system and
three with 20) that additionally include 1 or 3 rare causes.
Data was generated for two time periods with each of two ob-
servation lengths (4,000 and 10,000 timepoints) while vary-
ing the probabilities of occurrence of rare events (P= 0.005,
0.0025, or 0.0005). The expected number of occurrences and
mean number of occurrences (averaged over all datasets with
the same probability and observation length) are reported in
table 1. For each parameter setting (structure, type of causal-
ity, probability, time period) four runs of the system were cre-
ated. This resulted in 480 datasets (5 structures x 2 types of
causes X 2 time periods X 2 observation lengths x 3 proba-
bilities x 4 runs).

The time series were generated using the approach of
[Kleinberg, 2011] following a Fama-French [1993] factor
model, where the return for stock portfolio i at time t is given
by:

Tie =) PBijfie + it 4.1
j

Here fj; is the value of factor j at time t and (i; is the
weighting of factor j for portfolio i. The ¢ terms are portfo-
lio specific error terms. Causality is embedded in two ways.
First, if portfolio i influences portfolio j at a lag of 1 day, then
Tj,t = Tj,t + €,t—1. This is how the non-rare model (with 10
or 20 such relationships depending on the dataset) is embed-
ded. In the case of rare causes where the effect is a function of
the cause (i.e. it has a non-constant influence) then when the
rare event occurs, it influences the effect’s price movement in
the same way. In the second case, when the rare cause has
a constant (and substantial) influence then where c;; is the
influence of portfolio i on portfolio j, when event 1 occurs in
the time window before t then 15 = ;¢ + ¢i;. Note that
the factor time series are not included in the data used for
inference.
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Figure 1: Histogram of t-statistics for one 4K timepoint con-
stant influence dataset. Solid line depicts empirically inferred
null distribution, dashed line shows fit to graph. The statisti-
cally significant results (all genuinely causal) have t > 20.

4.2 Methods

The approach described in this paper, referred to as ARC (as-
sessment of rare causes), was compared against two others for
inferring relationships in time series data: bivariate Granger
causality [Granger, 1980] and dynamic Bayesian networks
(DBNs) [Murphy, 2002]. We are not aware of any methods
that deal specifically with evaluating rare causes, and did not
compare against data mining methods as these would only
identify the rare causes, not the relationship between them
and the other variables.

ARC used the approach described here to evaluate the rare
events along with the method developed in [Kleinberg, 2011]
for inferring the normal model. After calculating the unex-
plained and conditional unexplained values, an unpaired t-test
was used to determine the statistical significance of each re-
lationship. The locfdr package [Efron et al., 2011] was used
to infer the null distribution empirically (the theoretical null
N(0, 1) was used when there were too few results to infer it).
The FDR was controlled at 0.01 using the local fdr approach
[Efron, 2010]. Figure 1 shows a histogram of significance
scores from one dataset along with a fit to them and the in-
ferred null distribution.

Bivariate Granger causality was tested using the
granger.test function in the MSBVAR R package [Brandt,
2012] along with fdrtool (using a significance level of
0.01) [Strimmer, 2008] to determine which of the inferred
relationships are statistically significant.

The Banjo implementation of DBN structure learning was
used with the default settings and a run time of 1 hour with
6 threads [Hartemink, 2008]. This required the data to be
discretized so returns, which are relative to the previous day’s
value, were transformed to be either up or down.

The FDR (false discovery rate) and FNR (false negative
rate) are compared using only the embedded rare events, and
all methods used a lag between cause and effect of exactly
one day. The FDR is the proportion of incorrect effects of
the rare events that are identified out of the total number of
effects identified. The FNR is the proportion of effects that
are missed out of all effects of the rare events.

Method FDR. | FNR. | FDR¢ | FNR¢
ARC 0.0000 | 0.1553 | 0.0000 | 0.9671

DBN 0.4875 | 0379 | 0.9130 | 0.9394
bivariate Granger | 0.1198 | 0.1932 | 1.000 | 1.000

(a) 4,000 timepoints

Method FDR. | FNR. | FDR¢ | FNR¢
ARC 0.0076 | 0.0151 | 0.0833 | 0.9583

DBN 0.1830 | 0.2727 | 0.7903 | 0.9508
bivariate Granger | 0.0121 | 0.0720 | 1.000 | 1.000

(b) 10,000 timepoints

Table 2: Results are broken into two cases: 1) rare events with
a constant impact (FDR, and FNR.) and 2) where the effect
is a function of the value of the rare cause (FDR; and FNR¥).

4.3 Results
Empirical results are shown in tables 2a and 2b.

Constant influence datasets

First, when the rare cause has a constant, significant, influ-
ence on its effect, then regardless of the length of the time
series, ARC makes very few false discoveries (FDR 0, and
0.0076 in the 4K and 10K timepoint datasets respectively),
below the 0.01 level at which the FDR was controlled. The
primary difference is that with more data points, there are
fewer false negatives. Note that the FNR is calculated based
on whether a relationship with a rare cause embedded in a
dataset is identified. There was no correction for cases where
the rare cause occurred only once (making it such that a t-
statistic could not be calculated). This measure is thus ex-
tremely strict. This situation did not happen in the 10K long
time series, but happened 19 times in the 4K time series with
constant influence (and 24 times in the 4K time series with
functional relationships). The effective false negative rate
(adjusting the denominator to only count events that occur at
least twice and can thus possibly be found by this approach)
for 4K timepoints with constant influence is approximately
9%. On the other hand, both bivariate Granger causality and
DBNs have significant FDR and FNR rates (particularly in
the shorter time series). Bivariate Granger causality outper-
forms DBNSs in both cases, though both improve with more
data.

Functional influence datasets

While the FDR for ARC remains low in both cases (0 and
0.0833), one difference in results between the datasets with
constant impact and a functional relationship is the perfor-
mance of Granger causality. It fares better than DBNs on the
constant influence datasets, but this is reversed on the func-
tional datasets, where its FDR and FNR are 1 for both data
lengths. The FDR achieved by DBNs improves somewhat
with more data, but is still over 79%. This scenario is ex-
tremely challenging, since here a rare event may occur only
2-5 times and may only have a small influence (as it simply
adds its value to that of the effect). The FNR is in fact in-
creased in such cases even with non-rare events [Kleinberg,
2012]. Thus while extremely infrequent rare events (that oc-
cur only 1-2 times) with a small influence may be missed, we



can be confident that incorrect effects will not be falsely iden-
tified and that in some cases we can even find these rare and
less significant causes.

5 Related work

5.1 Data mining

Much of the prior work on rare events* has come from
data mining and information theory [Chandola et al., 2009;
Szathmary et al., 2007; Weiss, 2004]. However, the focus has
been on accurately identifying rare events (or classes of rare
events [Joshi et al., 2001]) such as network intrusions [Lee
and Xiang, 2001], disease outbreaks [Wong er al., 2003], or
credit card fraud [Aggarwal and Yu, 2001]. This is also re-
ferred to as anomaly detection. These approaches do not find
the causal relationship between the anomaly and the rest of
the variables and thus cannot determine a) why the rare event
occurred and b) what its implications are. If we do not aim
solely to identify these outlying events but rather to determine
if and how to act based on them (such as in order to improve
medical treatment or create public health policies), we need
additional causal information. For example, in order to have
a beneficial impact on a patient’s disease process, we must
target interventions at underlying causes and not mere down-
stream effects, as targeting these is not only ineffective but
may be harmful (many therapeutic interventions also carry
non-negligible risks). However, for datasets with vast num-
bers of rare events, this prior work may potentially be used
to reduce the computational complexity by selecting which
events should be examined further using the algorithms de-
veloped here.

5.2 Causal inference

Thus far no causal inference methods have specifically ad-
dressed the challenge of evaluating rare events. The most
similar work to that proposed here is on general meth-
ods for causal inference, including Bayesian [Pearl, 2000;
Spirtes et al., 2000] and dynamic Bayesian [Murphy, 2002]
networks. Causal inference methods based on Bayesian net-
works (BNs) use graphical models (along with other assump-
tions about the structures and data from which they are in-
ferred) to represent causal relationships using conditional in-
dependencies in a graph. Edges are directed from cause to
effect and a node in the graph (variable) is independent of
all of its non-descendants given its parents. Methods for in-
ferring these structures take two main approaches: adding
nodes one at a time using repeated conditional independence
tests [Spirtes et al., 20001, or searching the space of possi-
ble graphs for a set of variables and scoring how well each
accounts for the independencies in the data [Cooper and Her-
skovits, 1992]. However, the conditional probabilities associ-
ated with the rare events cannot be accurately estimated, and
rare events will have little impact on a graph’s score (partic-
ularly when a rare event’s effect has other, non-rare, causes),
making it difficult to accurately infer these relationships.

“4There is no single probability threshold for what makes an event
rare. In some cases 5% is considered rare, though values closer to
.05-.5% are also used.

Granger [1980] causality, an econometric method that de-
termines whether one time series is predictive of another at
various time lags after accounting for other possible infor-
mation, has been applied to continuous time series data out-
side of finance more generally but its more accurate multi-
variate form is computationally complex while the bivariate
form may erroneously find relationships between effects of
a common cause [Eichler, 2006]. Granger causality is often
evaluated using vector autoregressive (VAR) models and test-
ing whether inclusion of a variable with non-zero coefficients
in the regression leads to less variance in the error term. How-
ever, unless the rare event has a consistently large influence
on the value of the effect and occurs often enough that fail-
ure to account for these instances will affect the VAR model,
the rare event will not be identified as a cause. Extensions
to Granger causality, such as those linking Granger causality
and graphical models [Eichler and Didelez, 20071, face these
same challenges.

6 Conclusions

Being able to automatically detect the impact of rare events
is critical for using big data for decision-making, and partic-
ularly for enabling this to be done in real-time. Prior meth-
ods for causal inference based on graphical models, Granger
causality, and logical formulas have taken a probabilistic ap-
proach, making them unable to reliably infer causal relation-
ships involving these infrequent occurrences. On the other
hand, data mining approaches do not solve the problem of
causal inference, and cannot identify the impact of a rare
event. While prior approaches have aimed to predict and
identify rare events, we must know what their effects will
be in order to determine what action should be taken. Many
rare events (such as extreme laboratory values, or seizures)
occur in medical settings, yet clinicians must weight the rel-
ative risks and benefits of treatment and thus need to know
whether they are targeting a symptom or cause.

To address this problem we have developed a new ap-
proach, called ARC, for assessing the impact of rare events.
Using the idea of rare events as explanations for deviations
from usual behavior, we first infer a causal model of a system,
then compare how much of the value of variables is unex-
plained by the model to how much is unexplained conditioned
on the occurrence of a rare event. The approach was evaluated
on simulated data with two types of rare events (those having
a consistent and large impact and those with a more subtle in-
fluence), showing that this method leads to significantly lower
FDR and FNR rates than approaches not specifically devel-
oped for rare events. Future work will involve extending this
approach to non-linear relationships (where causes can inter-
act and have non-additive results), and potentially to discrete
effects. It may also be possible to build on the idea of how
much of an effect’s value a cause explains to develop new
approaches for detecting latent variables.
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