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ABSTRACT
While many sensors can monitor physical activity, there is
no device that can unobtrusively measure eating at the same
level of detail. Yet, tracking and reacting to food consump-
tion is key to managing many chronic diseases such as obe-
sity and diabetes. Eating recognition has primarily used a
single sensor at a time in a constrained environment but
sensors may fail and each may pick up different types of eat-
ing. We present a multi-modality study of eating recogni-
tion, which combines head and wrist motion (Google Glass,
smartwatches on each wrist), with audio (custom earbud mi-
crophone). We collect 72 hours of data from 6 participants
wearing all sensors and eating an unrestricted set of foods,
and annotate video recordings to obtain ground truth. Using
our noise cancellation method, audio sensing alone achieved
92% precision and 89% recall in finding meals, while motion
sensing was needed to find individual intakes.

CCS Concepts
•Human-centered computing→ Ubiquitous and mo-
bile computing;
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Eating recognition; Acoustic and motion sensing

1. INTRODUCTION
Nutrition and physical activity are key components of

maintaining health and treating disease, but while physi-
cal activity measurement has reached widespread consumer
adoption, similar devices to track eating have lagged behind.
Understanding the quantity and type of food eaten is neces-
sary to manage chronic diseases such as diabetes and obesity
and knowing when someone is eating can improve interac-
tion between people and their environment (e.g. silencing
phone alerts during a meal or giving medication reminders).
The most common method for longterm tracking of food

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Pervasive Health
© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

consumption is with food logs using paper journals or smart-
phone apps but these face low adherence, put the burden on
the user, and have only been evaluated during short-term
tracking. In comparisons against doubly labeled water (a
gold standard for estimating energy intake), self reports led
to overestimation of more than 20% in many studies [10].

While there have been computational advances in this
area, moving from small-scale studies to real-world environ-
ments remains a challenge. The comparative accuracy of
different sensing modalities is unknown since prior work has
evaluated each individually (e.g. only acoustic or motion
sensing), often with constrained food choices or simplified
environments (e.g. no multitasking, no background noise).
Work in free-living environments on the other hand, has not
had the level of detail needed for ground truth (e.g. relying
on users to remember when they had a meal).

The main contributions of this paper are 1) rigorous com-
parison of acoustic and motion (wrist and head) sensors in-
dividually and in combination; 2) a unique publicly available
data resource,1 annotated from video at the level of chewing
and swallowing (rather than meals); and 3) demonstration
of the feasibility of eating recognition with completely un-
constrained foods and multitasking.

We develop the ACE (accelerometer and audio-based calo-
rie estimation) dataset, which includes 6 participants (2 ~6
hr sessions each, total ~72 hrs) wearing audio and motion
(head, wrist) sensors simultaneously. Using a customized
earbud with two microphones we show that our noise can-
cellation procedure can remove nearly all external noise and
user and external speech. Acoustic sensors worked for more
foods than expected, but failed completely with soft foods
like bananas. Motion sensors capture more activities (e.g.
moving food to the mouth) but require more feature engi-
neering to fully exploit. We have also collected free-living
data from the same participants and continuously weighed
food during consumption for future use.

2. RELATED WORK
Automated eating recognition can be categorized in three

main ways: environment (laboratory, free-living), sensors
used, and output (identifying meal periods, foods consumed,
or individual chews and swallows), summarized in table 1.

2.1 Acoustic Sensors
One of the earliest works used acoustic sensors to de-

tect chewing and food type [2]. While accuracy was high,

1Avialable at: http://www.skleinberg.org/data.html



Study Sensors Ground truth Foods # People Duration Environment Output
Amft et al. [2] Audio Not reported 4 4 1 hour Lab Chew times
BodyBeat [15] Audio Not reported 4 14 3.5 hrs Lab Eating times
Thomaz et al. [17] Single wrist motion Video 5 21 10.5 hrs Lab† Eating times
Dong et al. [8] Single wrist motion Participant log Free 43 449 hrs Free-living Eating start
Rahman et al. [14] Head motion Real-time log Free 38 76 hrs Lab Eating times
This study Motion (Head, both

wrists), Audio
Video Free 6 72 hrs Lab∗ Chew, intake

Table 1: Comparison of related work. †Data collected for 9 others in free-living conditions. ∗While we report only lab data
in this paper, we have collected approximately 2 days of free-living data for the same participants.

only four foods were tested and participants were told how
to chew (with mouth closed) and how large a bite to take
(small enough to be consumed at once). Later work devel-
oped specialized microphones to better capture non-speech
sounds [15] and calculated bite weight from chewing sounds
[1]. While these works achieved high accuracy, participants
ate a limited set of foods in quiet laboratory environments,
and accuracy with realistic background noise and represen-
tative food samples is unknown. In-ear and reference micro-
phones have been used for comparing sound levels to improve
eating recognition [13] though that work did not remove ex-
ternal noise from the in-ear signal. More recently, ambient
sounds were used to detect eating from audio recorded at
the wrist [19], though this detected meals rather than chews,
which are needed to estimate food type and quantity.

2.2 Motion Sensors
Sensors placed on the wrist and arm have been used to

identify gestures related to food and drink intake [16]. Wrist-
based sensors are the most frequently used for detecting peri-
ods of eating in free-living environments, and have also been
used to identify individual bites of food, though accuracy de-
creased when food type was not controlled [7]. In free-living
conditions, the primary obstacle is determining ground truth
for training and evaluation. In [8] this was based on partic-
ipant logs (which may contain inaccuracies and omissions).
Since participants used their hands to mark the start and
end of eating (using written logs or a button on the watch),
this motion precedes all eating and may be responsible for
some of the inference accuracy. In other work [17], a first-
person camera automatically captured images to allow ob-
jective ground truth in free-living conditions, though accu-
racy was lower than in other lab-based studies (66.7% pre-
cision, 88.8% recall). Google Glass allowed recognition of
periods of eating based on head movement [14], though this
work did not detect individual chews and required personal
training data to achieve higher accuracy. Other work with
smart eyewear identified activities based on blinking, but
had lower accuracy than other sensing modalities [11]. Fi-
nally, sensors have been placed around the throat to detect
the specific motion of swallowing and eating [3, 6], but these
may be uncomfortable or too invasive for long-term use.

2.3 Environmental Sensors
In contrast to body-worn sensors, external cues such as

instrumented environments (e.g. RFID tagging [5], pressure
sensitive table surfaces [21]) have been used, but reduce mo-
bility. Another approach is using a body-worn camera to
automatically take photos at regular intervals, though this

requires some photos to be discarded or edited to preserve
privacy [18]. In other cases individuals intentionally capture
images of meals, which are annotated by crowd-workers to
determine nutrition content [12], but this does not yield the
real-time information on chewing and swallowing needed for
classifying food type and quantity automatically.

3. STUDY DESIGN AND SENSORS
Our overall goal is to determine the relative contributions

of audio and motion sensors (mounted on the head and both
wrists) for recognizing eating in realistic scenarios, while bal-
ancing the need for ground truth, as the accuracy of sensors
in the same scenario is not yet known. Some prior work
has reported on multiple sensors, but each was evaluated in
a separate experiment [4]. To address this, we allow free
choice of food, unconstrained activity sequences and mul-
titasking, while collecting data primarily in our laboratory,
which was outfitted with video cameras. We discuss each
device used, then the noise cancellation method, data col-
lection, and annotation. An overview is shown in figure 1.

3.1 Sensors

3.1.1 Audio
Experiments have avoided capturing background noise by

requiring a quiet environment or no conversation, but in
reality many meals are shared or take place in loud restau-
rants. Instead, we augmented a standard earbud with inter-
nal and external microphones to enable noise cancellation.
Most eating-related sounds are audible only on the internal
mic, while talking and noises external to a participant (e.g.
other people’s speech) are captured by both mics. We re-
move the portion of the internal signal that is well-predicted
by the external recordings, meaning background noise and
the eating noises of others, and noises that may be con-
founded with eating. For example, walking over gravel may
sound like chewing, but because our audio cancellation does
not filter based on the type of noise (e.g. eating vs speech)
but rather its source, these will be removed. The noise can-
cellation process is described in depth later in the paper.

Figure 2 shows the earbud. After removing the speakers,
we used wires from one side for the internal microphone
(which was then sealed inside the earbud), and from the
other for the external microphone, which was glued to the
back of the earbud shell. Audio was recorded using a pocket
voice recorder with uncompressed 16-bit 44.1kHz samples.

3.1.2 Wrist Motion
Many eating activities, such as lifting food to the mouth or
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Figure 1: Overview of study design, showing ground truth (green circles), motion sensors (red circles) and acoustic sensor
(yellow circle). Video is annotated by two researchers and a third participates in merging annotations (colored diamonds).

Figure 2: Earbud modified to record audio from two mics,
one inside the earbud and one attached to the back (shown).

cutting food involve wrist movement. However, most work
has used a single motion sensor placed on the dominant arm,
while watches are usually worn on the non-dominant side.
We aim to understand how this affects accuracy.

When possible we used consumer devices to determine
what performance can be achieved in real-world settings.
We used the LG G watch (W100) due to its Android Wear
OS, 9-axis inertial motion sensor (accelerometer, gyroscope,
and magnetometer), and resizable wristband. We recorded
at 15Hz as a trade off between battery life and recording
rate, as we wanted to be certain that the full 6 hours of
data would be recorded. In lab conditions both watches
always recorded for the full time period, while in free-living
conditions, the watches had 8–12 hours of battery life. We
developed an Android app to log the sensor data.

3.1.3 Head Motion
Head motion was captured using Google Glass, which has

no lenses but has a similar form factor to glasses along with a
small display. Glass contains a 9-axis inertial motion sensor
situated near the right temple. We hypothesized that this
would capture the motion of the head toward food or drink,
and that the sensor’s location near the ear may allow it to
pick up subtle motions of the jaw during chewing.

Prior work using Glass for this purpose recorded at ~2.5
Hz [14], due to the task (classifying 1-minute windows as eat-
ing or not) and battery life concerns. We developed Glass-
ware to record at 15Hz as for the watches. Since Glass has
limited battery life and could not record at this rate for a

full session, we connected it to a small external battery.

3.1.4 Video
We used three IP-based, 1280x720 pixel resolution, H.264

encoding cameras attached to software-controllable pan-tilt
mounts: one near the ceiling for a top view, and two clamped
to the front and side of the table. While the participant was
seated at the table, the three viewing angles ensured mouth
and throat were visible even while hands were raised to the
face. During other times the cameras were panned to track
the participant when they moved around the lab space.

We recorded at 30 frames per second (fps). As the cam-
eras are not real-time devices, actual frame-rate varied be-
tween 8 and 32fps (mean 30.08fps). While only 0.26% faster
than desired, this yields over 50s of timing discrepancy af-
ter 6h. Because the timing of events and synchronization
of all recording modalities was critical for high-quality an-
notation and inference, we regularized the video to 30fps
using the 1-sec resolution timestamp imposed on each frame
by the camera software. We modified a video processing
program2 using optical character recognition3 to recover the
timestamps and duplicate or remove frames from the video
as needed to maintain 30fps without re-encoding.

3.1.5 Sensor Synchonization
Data were not extracted in real-time, and the device clocks

may not remain in sync, so we developed a synchronization
procedure. At the beginning and end of each session we held
all three sensors together and performed three controlled
taps on the table. This generated strong spikes in the motion
and audio data and was clearly visible on the cameras. The
tap times in each data stream were used to correct for timing
offset and slight differences in device clock rates.

3.2 Noise Cancellation
While acoustic sensors can capture data specific to eating

(e.g. sounds of individual chews and swallows), they are of-
ten used in quiet laboratory settings, without background
noise. To enable real-world use, we develop an approach for
filtering out all sounds except for the user’s eating, using the
idea that unwanted signals will be recorded by both micro-

2http://www.avidemux.org/
3https://github.com/tesseract-ocr/tesseract
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Figure 3: Spectrograms of (a) raw inner microphone audio
and (b) recovered eating sound signal.

phones. While we cannot guarantee that all speech is unre-
coverable, this processing provides some privacy protection
and the approach is fast enough to be run in real-time on a
low-power digital signal processor embedded in an earbud.

The outer microphone of our earbud measures the back-
ground noise signal, n, while the inner microphone measures
a noisy eating signal, x, which is a function of the pure
eating signal, s, and the noise, n. Noise here means non-
eating sounds and may include background music, the user’s
speech, or background speech. We cannot simply subtract n
from x because there is a frequency-dependent phase shift in
x due to the ~1cm distance between the microphones, and
the earbud enclosure attenuates the noise in a frequency-
dependent manner. We model x as s+E(n), where E is the
unknown transfer function of the earbud enclosure.

We performed a static characterization of the transfer
function E, but it depends on the earbud construction, user,
and environment. Using an adaptive filter [20] we contin-
uously update an estimate of E and use it to remove an
estimate of the noise from the inner microphone signal. In-
tuitively, the filter subtracts out the information in n from
x, leaving only the desired information s. For each sample
of audio, the filter computes the dot product of the previ-
ous k samples from the outer microphone n with a k-element
weight vector w to yield an estimate of the inner microphone
signal, x̂ = w ·n. We then subtract this estimate of the trans-
formed noise from the actual inner microphone signal x to
obtain the recovered eating sound signal, ŝ = x− x̂.

Finally we update filter weights to adapt to changes in
the earbud transfer function: w := w+ ηŝ · n, where η is an
adaptive learning rate parameter set by η = min( η0|n| ,

1
|n|2 )

and η0 is the base learning rate. This provides rapid adapta-
tion to changing environmental signals (via the η0/|n| term)
and avoids filter instability by limiting the learning rate to
the maximum theoretical limit (1/|n|2) [20].

We use a filter length of 50ms and set η0 = 0.6 after em-
pirically tuning for maximum rejection of background noises
and minimum distortion. This technique rejects background
music and speech signals while preserving eating sounds.
Figure 3 shows a typical example of audio from a busy fast
food restaurant. The sample includes background music
from the restaurant, activities of other customers, and a
shared meal. After filtering, chewing sounds remain while
background music and speech are removed. While the data
in this paper were collected in the lab, this demonstrates
that the approach can handle more realistic environments.

3.3 Data Collection
With IRB approval we collected data from 6 participants

(4 male; all aged 18-35) in two ~6hr lab data collection ses-
sions for each participant.4 Each session contained at least
two meals, chosen by the participants. Ten sessions included
breakfast and lunch while two others included breakfast and
dinner, and six sessions had additional snacks. While eat-
ing in the laboratory always happened at the same table
(instrumented with a scale), the shared space allowed for
social meals and natural conversation (participant and re-
search group members could eat at the same time). Fluids
could be consumed anywhere in the room.

During each session one researcher was responsible for en-
suring consistency in procedures, calibrating and synchro-
nizing equipment, starting and ending recording, monitoring
video and other sensors during data collection, and transfer-
ring data off the devices. Due to the complexity and many
potential points of failure, we did test runs of data collection
and developed a ~40 item checklist for the procedure.

3.4 Annotation and Ground Truth
Prior work has mainly labeled activities in real-time [14]

or used a constrained sequence of activities [15]. Less fre-
quently, video has been used to annotate the start and end
times of eating and other activities [17]. In contrast, we al-
low free choice of activities (e.g. simultaneous talking and
eating), and annotate at a finer level of granularity than
meals. This enables future work estimating food type and
amount, and provides more precise meal times. Individuals
do not chew continuously, they may pause to stir their soup,
talk, or answer email so many non-eating activities may be
erroneously labeled as eating when using coarse labels such
as only the beginning and end of a meal. Further, some
of these other activities, such as stirring or preparing food,
may be useful for recognizing precursors to food intake.

Video annotation is time consuming, but it is the closest to
true ground truth, and most activities were easily observed.
We labeled the video using vCode [9], and to avoid biasing
the results, no sensor data was consulted during annotation.
It is possible that events like swallows, which are more ap-
parent on the audio, may be missed. Activities annotated
and their definitions are as follows. Events with duration
are marked with [] and L,R subscripts denote those where
the left and right hands may be separately involved.

PreparationL,R[] Interacting with food or drink other
than raising it to the mouth (e.g. stirring soup, adding crou-
tons to a salad, and moving food from takeout containers to
a plate). The rationale is that these activities occur prior to
consumption and may have identifiable wrist movement.

DeliveryL,R[] Continuous motion of bringing food or drink
to the mouth using one or both hands. We considered “lift,”
which encompasses the full cycle of drawing the hand to-
wards and away from the mouth, but in preliminary tests
this cycle was often interrupted (e.g. when talking). We
require that each delivery event ends in an intake.

Drink[] and Intake We distinguish between intakes with
a duration (sipping from a straw) and consuming a discrete
amount of food, corresponding to drinking and eating re-
spectively. Note that the intake modality and not the food
creates the distinction. Soup may have a continuous intake

4A single session was recorded for one more participant who
was not available for further data collection. Due to our
leave one session out evaluation we exclude this participant.



Figure 4: Example of merging annotations, along with event probability calculations and final inferred event sequence.

when drinking it from a cup and a milkshake may have a
discrete intake when consumed with a spoon.

Chew This is the manipulation of food with the teeth.
The time used is that when the jaw first closes.

Mouthing[] Manipulating food with the tongue, includ-
ing cleaning the mouth and moving food around in the mouth.

Swallow This is the most difficult annotation using only
video, but can often be heard clearly on the audio. We
annotate only when swallowing is clearly visible in the neck.

NapkinL,R[] Touching the face with a napkin. This may
be conflated with delivering food to the mouth and may
occlude chews. The time range begins when the napkin
touches the face and ends when the napkin loses contact.

We enforced the following constraints: each hand does
only one activity at a time; mouthing, swallowing, and chew-
ing cannot be simultaneous; each intake is either continuous
or discrete; and events of the same type may not overlap.

The data outside of meals include activities such as talk-
ing, napping, and doing push-ups, but we do not annotate
these. Since our focus is eating detection, we aim to en-
sure eating and drinking are annotated accurately, while
unlabeled activities provide negative examples, improving
the robustness of classification. In practice, classification of
swallowing was poor due to the difficulty of its annotation.

Each session was annotated independently by two anno-
tators. This reduced the chance that codes would be missed
and ensured consistency in their use. To combine annota-
tions we developed a tool that resolved minor disagreements
automatically and let us visualize and manually resolve the
remainder. We used conservative thresholds for automatic
merging, requiring that intake and swallow events be within
500ms and chews within 250ms. The stricter timing for
chews is because two distinct events may be close in time.
For ranged events, the tolerance was 1000ms, and we aver-
aged the annotated times. Intakes were automerged 89% of
the time, while chews were automerged 77% of the time. All
annotations not automatically combined were discussed by
three people (two annotators plus a third researcher), and
automerged annotations were also reviewed during this pro-
cess. Annotation of each session took ~8 hours per annotator
and merging took around 2–3 hours per session.

Figure 4 illustrates the process. The events shown are
mainly chews (orange) with some intakes (red), and drinking

(blue bar). The annotations agree closely on the first intake,
of peanuts. There are some disagreements about the second
intake, part of a cookie. The first chew from B is added to
the merged annotation, but some others are dropped. There
is slight disagreement on the duration of the drinking episode
and B’s timings are used. During classification, the period of
chewing disagreement had a lower probability of containing
chews than the time period with higher agreement.

4. DATA PREPARATION AND ANALYSIS
We now describe the processing of raw sensor data and

classification procedure. We train binary classifiers for each
event (chew, intake, drink) using combinations of sensors to
determine how their inclusion affects precision and recall.

4.1 Feature Extraction

4.1.1 Audio
After noise cancellation, we down-sample the audio from

44.1 kHz to 16 kHz to speed up processing. We choose this
sample rate to capture chewing noises, which are present up
to 4 kHz, plus the absence of signal from 4 kHz to 8kHz, to
allow differentiation from more broadband non-chew signals.

Next we segment the audio into 200ms windows with a
20ms step size. The windows are large enough to capture a
whole chew signal plus silence before and after, while being
small enough to avoid capturing multiple chews. For each
window we then extract a set of 14 features often used in
speech processing using the Yaafe toolbox: energy, spectral
flux, zero-crossing rate, and 11 MFCC coefficients.

4.1.2 Motion
For each motion sensor, we segment the raw data into 5s

windows with a 100ms step size. This captures movement
to and from the mouth for intakes, yet contains only a single
intake per window. We extract 32 features per window.

Statistical features are means of the accelerometer and
gyroscope axes (6 features), to capture orientation; mean
magnitude of the gyroscope vector and mean magnitude of
derivative of acceleration vector (2 features), which measure
total amount of linear and twisting motion; and covariance
of acceleration components (3 features) to capture changes
in device orientation. To capture temporal shape we use



(a) Salad with Salmon (b) Bagels, cream cheese (c) Sushi and dumplings (d) Steak and potato

Figure 5: Examples of meals from study.

(a) Chews (b) Swallows

(c) Food intake (d) Fluid intake

Figure 6: Number of events per participant and session
(shown in red and blue).

coefficients of 4th order polynomial fits to each acceleration
component with hamming window weighting (15 features).
To measure frequency of oscillation in motion we use
zero-crossing rate of high-pass filtered acceleration compo-
nents and standard deviation of the zero-crossing intervals.

4.2 Classification
Each feature window is labeled with zero or more events.

For instantaneous events (chew, intake) this happens when
the event occurs in the center half of the window. For events
with duration (drink) a window is labeled when the event’s
duration includes the window’s center time.

In leave one session out (LOSO) validation, we omit one
session during training and evaluate on that session (train-
ing on 11 sessions from 6 participants and evaluating on
the 12th). Leave one participant out (LOPO) trains on 10
sessions from 5 participants and evaluates on the 6th par-
ticipant. We do not evaluate on finer partitions (e.g. leave
one window out) to avoid bias. We used a random forest
classifier, as it outperformed other methods in prior com-
parisons [14]. We use the implementation in scikit-learn
with 100 trees to obtain high precision event probabilities.
For each fold of each experiment, one classifier is trained
per event type. We chose several binary classifiers over a
single multi-class classifier as multiple events may occur at
one time. When training on an event-type, we only include
features from relevant sensors: chew (audio, Glass), intake
(watches, Glass), and drink (watches, Glass).

To get event sequences as in the annotations, we find

all intervals where the probability for an event type ex-
ceeds a threshold and then drops by 50%. A 99.9th per-
centile threshold, recomputed for each session, optimized
meal recognition while trading off recall of individual events.
For instantaneous events (intake, chew) we use the midpoint
time for each interval, while for events with duration (drink)
the entire interval is used. Figure 4 shows example output.

4.3 Evaluation
We evaluate precision and recall of individual events and

of meal periods. To determine if an inference matches the
ground truth, we use the same tolerances as for merging:
250ms for chew, 500ms for intake, and 1000ms for drink.

To evaluate performance on detection of meal periods, we
define a meal as a cluster of intakes or chews. Treating each
intake as a vertex of a graph, we add an edge between any
pair that is less than 2min apart and exclude components
with under 2min of total duration. Start and end times are
the first and last intake of the component. This captures
consecutive intakes and chewing in between as a single meal
while breaking up multi-part meals that have long pauses.
The same definition is used to determine ground truth and
to identify meals from inferred chews and intakes. Precision
and recall of meal periods is defined in terms of amount of
time correctly/incorrectly detected as a meal period.

5. EXPERIMENTAL RESULTS

5.1 Data Characteristics
We recorded a total of 71.53 hours of data. We aimed for

6 hours per session (mean 5.96, sd 0.22) to capture multiple
meals and snacks. On average each participant had 2.5 meals
(sd 0.52), with a meal defined as clusters of intakes with a
maximum separation of 15min. Meal duration ranged from
1.65 to 58.66 minutes (mean 15.05, sd 13.51). We identified
a total of 1492 food and 329 drink intakes. The same food
may be consumed in multiple ways, as with a milkshake hav-
ing a continuous drink-type intake when consumed with a
straw, but a discrete food-type intake when consumed with
a spoon. The data contain 17,080 chews and 1422 swallows.
Since swallowing is not always visible, this number is lower
than the true number of swallows that occurred. The num-
ber of events per participant and session are shown in fig-
ure 6. Participants spent a significant amount of meal time
talking (avg. 33%, range 8-79%), and ate a variety of foods
including soft tacos, popcorn, pizza, fruits, soup, chips, and
ice cream. Multiple foods were often consumed in a meal
(e.g. sushi and dumplings) and in a bite (e.g. chips with
guacamole). Examples are shown in figure 5.

While prior work found that time between chews depended



Chew Intake Drink Meal
Sensor Precision Recall Precision Recall Precision Recall Precision Recall

AGRL (LOPO) 65 21 37 20 47 11 83 90

AGRL 72 23 42 21 49 12 88 87
AGR 72 23 41 24 47 10 86 88
AGL 72 23 16 9 41 10 81 91
GRL - - 42 21 49 12 95 43
ARL 72 25 42 24 46 10 86 93
AG 72 23 11 9 30 6 73 93
RL - - 42 24 46 10 94 45
A 72 26 - - - - 92 89
G - - 11 9 30 6 73 48
R - - 38 24 50 14 93 42
L - - 8 7 30 7 61 36

Table 2: System performance averaged over all sessions. Results are for LOSO unless indicated. Letters denote combinations
of A (audio), G (Glass), R (right) and L (left) watch sensors. For each task, the result with the highest F-measure is bolded.
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Figure 7: Chew timing detail: (a) each participant is rep-
resented by an ellipse with width in each direction showing
the sd for that axis; and (b) combined time between chews.

on food type [2], we found this was consistent within an indi-
vidual while varying between people. Participants ate very
different foods in their two sessions (e.g. salad one day, pasta
another), so this is not explained by a preference for simi-
lar foods. Figure 7a summarizes this result, comparing the
mean time between chews for each user’s two data collection
sessions using the 2nd and 3rd quartiles. We plot the mean
for session one against that of session two for each user.

5.2 Sensor Comparison
Results of event and meal detection for various sensor

combinations are given in table 2. Unexpectedly, given the
range of foods and amount of talking during meals, audio
has the highest precision (92%) and recall (89%) on meals.
Our annotation of individual chews and noise cancellation
procedure may have enabled this as while some chews are
missed, those recovered have high precision. This is also
why performance degrades in some cases with more sens-
ing modalities. All combinations with audio have F1-scores
above 80% on meal detection, with the best being all sen-
sors (AGRL) or audio plus the two watches (ARL). LOSO
outperformed LOPO along every dimension, except recall of
meals, possibly due to the individuality of chew timing.

Without audio, individual chews are not detected (only
periods of chewing) and meal recall suffers, as it is based on
intakes. High precision on meal recognition is still achieved
with any combination of motion sensors that includes the

right watch (i.e. the dominant wrist for all participants).
Performance varied across individuals. Using all sensors

and LOSO, 6 sessions had 99% precision in detecting meals,
while one participant had two sessions with low precision
(69% and 35%). This participant was an outlier, poten-
tially due to food choices (chicken wings, scrambled eggs,
ice cream). Chew precision in most sessions was over 80%
but that same participant’s sessions were 22% and 27%.

Chew performance was best for crisp foods like salad,
rather than soft ones like bread and rice. However, in these
cases enough chews were still detected to recover the meal
period from audio. In one case (banana with almond butter)
chew detection failed entirely, yet intakes were inferred and
the meal period was detected with every combination that
included at least two motion sensors. This demonstrates
the added value of motion sensors. In contrast, chewing of
strawberries was easily detected, suggesting such variation
within food groups may enable recognition of food type.

Figure 8 shows an example of false negatives. Only two
of five intakes were inferred. The three others show clear
peaks in the intake probability time series but did not meet
the threshold (dashed line). The earbud initially came loose
from the participant’s ear, and chews were only detected
after the participant readjusted the earbud (blue arrow).
More work is needed to better capture patterns in the event
probabilities to recover event timings.

The annotations were largely adequate, however two drink
events were found that were missed in the annotation due
to poor visibility in the video, and periods of eating yogurt
that contained candy pieces were frequently annotated as
mouthing while chewing was detected and may be a more
appropriate description of the activity.

5.3 Dominant Versus Non-dominant Hand
Wrist-based sensors are often placed on the dominant hand,

while watches are normally worn on the non-dominant, lead-
ing to a need to understand how much each hand is used for
eating. By chance, all participants were right handed. Food
preparation (stirring, cutting, opening containers and so on)
was done mainly with the dominant hand (55.28% of total
prep time) or both hands (41.23%), with the non-dominant
hand rarely used alone (3.43%). In contrast, delivery, bring-
ing food or drink to the mouth was most often done with
the dominant hand (69.3%), with the non-dominant hand
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Figure 8: Example of false negatives (circled in blue). In-
takes are shown in red and chews in yellow.

used much more frequently by itself than was the case dur-
ing preparation (17.57%). Both hands were used simultane-
ously (such as when lifting a sandwich) 12.82% of the time.
The difference between the use of the non-dominant hand
during the two activities was statistically significant (p =
0.0280 with a paired t-test). We found the non-dominant
hand was used for intake when the dominant hand was in
use for an activity requiring more precision (using a mo-
bile phone) or strength (opening a bottle), or when eating a
more formal meal (e.g. cutting steak with knife in dominant
hand, without switching hands for intake).

6. CONCLUSIONS AND FUTURE WORK
Identifying eating activities in an automated way is a core

problem for promoting health and treating chronic disease.
Despite much work on this problem, little has been known
about how sensors compare since they have been evalu-
ated separately. We present the first comparison of acous-
tic and motion sensors (head and both wrists), with eval-
uation against finely annotated video ground truth. Using
a second microphone and noise cancellation, audio sensing
achieves high levels of precision and recall in detecting meals
(92% and 89%), but misses some individual chews. Motion
sensors can fill this gap by identifying food and drink in-
take, but the lower specificity of this signal requires more
advanced modeling, such as modeling the dependency be-
tween events and their temporal sequencing. Data are avail-
able at http://www.skleinberg.org/data.html

7. ACKNOWLEDGMENTS
This work was supported in part by NSF Award #1347119

(SK, CM, MZ) and NIH Award Number R01LM011826 (YH).

8. REFERENCES
[1] O. Amft, M. Kusserow, and G. Troster. Bite weight

prediction from acoustic recognition of chewing. IEEE
Trans Biomed Eng, 56(6):1663–1672, 2009.
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