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ABSTRACT
Determining when an individual is eating can be useful for
tracking behavior and identifying patterns, but to create nu-
trition logs automatically or provide real-time feedback to
people with chronic disease, we need to identify both what
they are consuming and in what quantity. However, food type
and amount have mainly been estimated using image data (re-
quiring user involvement) or acoustic sensors (tested with a
restricted set of foods rather than representative meals). As a
result, there is not yet a highly accurate automated nutrition
monitoring method that can be used with a variety of foods.
We propose that multi-modal sensing (in-ear audio plus head
and wrist motion) can be used to more accurately classify food
type, as audio and motion features provide complementary
information. Further, we propose that knowing food type is
critical for estimating amount consumed in combination with
sensor data. To test this we use data from people wearing
audio and motion sensors, with ground truth annotated from
video and continuous scale data. With data from 40 unique
foods we achieve a classification accuracy of 82.7% with a
combination of sensors (versus 67.8% for audio alone and
76.2% for head and wrist motion). Weight estimation error
was reduced from a baseline of 127.3% to 35.4% absolute rel-
ative error. Ultimately, our estimates of food type and amount
can be linked to food databases to provide automated calorie
estimates from continuously-collected data.
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INTRODUCTION
While eating recognition has been an active area of research
(leading to a number of solutions using acoustic sensors, con-
tinuous image capture, and motion sensing), we need to know
not only that someone is eating, but what they are eating and
how much they consume to develop truly automated dietary
monitoring. A system that could determine that an individual
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consumed 3oz of steak, 5oz of potato, and 2oz of salad could
use this information to track nutrition (identifying deficiencies
and unhealthy behaviors), provide feedback to individuals with
chronic diseases such as diabetes to improve self-management
(suggesting insulin doses), and determine adherence to dietary
guidelines. Other applications include providing personalized
food suggestions based on dietary goals and prior consumption,
for example by pushing menu suggestions to a user’s smart-
phone when location data says they have entered a restaurant.

Body sounds and movements have been used to recognize
eating episodes, but have been under-explored for estimating
food type and quantity. Instead, most approaches to tracking
nutrition in such detail require extensive user involvement
(e.g. manual input with paper logs and mobile apps), or have
low accuracy. Automated solutions mainly use only audio,
classifying a small set of simple foods; or only motion sen-
sors, tracking solely the number of bites from wrist motion.
However, acoustic sensing fails for soft foods, and counting
bites does not provide the nutrition information needed to fully
replace user-generated food logs.

We propose that audio and motion data can be combined to
accurately estimate food type and amount for each intake. We
hypothesize that while acoustic sensors can distinguish be-
tween different food textures (crisp vs. tacky), motion sensors
can help discriminate between soft foods such as ice cream
and a milkshake based on head or wrist position. Similarly,
features such as the number of chews after a bite are likely
related to the size of the bite in a food-dependent way due
to physical properties, but finding individual chews requires
acoustic data and we need motion to accurately estimate type.

We use data collected from 6 individuals wearing motion
(head, both wrists) and acoustic sensors (customized earbud),
with ground truth from detailed video annotation (e.g. indi-
vidual chews, swallows). Food choice was unconstrained, and
participants ate meals such as tacos, sushi, and steak. Even
with 40 food classes we achieve high classification accuracy
(82.7%). Further, when combining knowledge of food type
with features extracted from sensor data, amount consumed
can be estimated with error similar to that of human annotators
in prior work: 35.4% error for solid food, 47.2% for drinks. In
contrast, without type information error is high (127.3% for
solid foods, 60.4% for drinks). While we use multiple sensors,
these modalities may ultimately be combined into a single
wearable (e.g. motion/audio sensing earbud).

Our primary contributions are: 1) rigorous comparison of
sensing modalities in a single setting with realistic meals,
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showing that motion and audio data can be combined to
accurately estimate intake content and amount; and 2) a
unique publicly available dataset with ground truth of food
type and weight for each bite. Data can be obtained at
http://www.skleinberg.org/data.html.

RELATED WORK

Eating recognition has been a significant topic of research,
with many methods developed using acoustic and motion sens-
ing, image processing, and environmental sensors, but these
modalities have mainly been investigated separately.

Acoustic sensing
Audio sensors, such as earbud microphones, have been highly
accurate for recovering activities such as chewing [3], and
intuitively such sounds should help to discriminate between
foods such as carrots and tortilla chips. Thus, methods for
automatically estimating the type of food consumed have gen-
erally focused on acoustic sensing, though have mainly clas-
sified intakes from among a small group of foods. Amft and
Tröster [4] used a set of 19 foods (including crisp and soft),
with classification accuracy of 80% with an earpad sensor
(70-75% with an earbud form factor). However this work in-
volved only 3 male participants and more critically evaluated
discrete foods (e.g. potato, orange) rather than meals, which
normally combine multiple food types. Later work developed
specialized wearable microphones, though these were evalu-
ated on fewer foods: Päßler et al. [22, 23] used 7 foods (potato
chip, peanut, walnut, carrot, apple, chocolate, pudding) in 10
pieces, Bodybeat [25] used 4 (cookie, apple, bread, banana),
and Bodyscope [32] 2 (cookie, bread). Rather than discrete
sequential bites (e.g. piece of apple, then piece of cookie) our
data is from full meals with complex foods such as salad or a
stir fry where every bite may be somewhat different.

While audio sensors are mostly placed on the ear or around the
throat, recent work has used wrist-mounted audio to identify
eating behavior, such as using environmental sounds to iden-
tify meal periods [31]. Other work attempted to use such data
to classify food type, but tested only apple and potato chips
and participants were told how many bites to take [17]. Sen-
sors further away from the ear may also face more challenges
with background noise.

To automate nutrition logging we need to estimate amount
consumed in addition to food type, though this problem has
been less studied than classification. One seminal work ex-
tracted features from audio data to estimate intake size for
potato chips, lettuce and apple [2] with 8 participants, with er-
ror ranging from 19-31% depending on food type. Despite the
relationship between food sounds and quantity consumed, we
are not aware of more recent advances in finding bite weight.

Motion sensing
Motion sensing raises fewer privacy concerns than continuous
audio collection, though it is generally less accurate than audio-
sensing. Wrist motion, recorded with smart watches, has
been used to detect a range of eating behaviors, such as when
a person is eating [28, 12] and what utensils are used (e.g.

chopsticks, spoon) [1, 27]. Thus far, wrist motion has not
been used to detect food type. Other work used head motion
captured with Google Glass to identify meal periods [24],
though this data is not specific enough to identify individual
chews (as is needed to characterize eating speed and time
between chews to identify food quantity).

In addition to accelerometers, motion has also been captured
with capacitive sensors, primarily placed around the neck with
collar-like devices [9]. These have been primarily used to
identify eating behavior such as individual swallows, but have
also been used to estimate amount of fluid intake [8], with
AUC of .73 to .76 for classifying drinks as 5 or 15ml. Other
work used proximity sensors to measure ear deformation [5],
though this did not aim to classify food type or quantity and
had lower accuracy in the wild than in lab settings (where
foods were restricted to M&Ms, apples, and bananas).

Wrist-based motion sensors have been used to indirectly esti-
mate calories consumed, by counting bites [11, 26] – assuming
a fixed number of calories per bite. However, bite weight and
calorie content vary in a food type and user-dependent manner,
and may change over the course of a meal. While food-type
and user-specific features can be estimated, they were not used
in that work. In our data, intake size varied greatly, with food
intakes from 0g to 43g (mean 6g, s.d. 20g) and drink intakes
from 2.5g to 168g (mean 31g, s.d. 25.5g). Prior work has also
tended to focus on either solids or liquids, while we aim to
estimate the quantity of both.

Image-based methods
Another key approach to objective nutrition assessment is
based on image analysis. Platemate used crowdsourcing to
label images, and found the accuracy of this approach was com-
parable to that of experts (mean absolute error of 198 calories,
33.2%) [21]. However, this approach requires a user to remem-
ber to take a photo and requires the labor of crowd-workers
to label the images. The mean time to complete the task was
94.14 minutes. While this is not an impediment for daily food
logs, it does not allow real-time interventions, such as adjust-
ing dosing of insulin for a person with diabetes or helping
someone eat more mindfully. Menu-match, Im2Calories, and
others provide a more automated solution by combining image
analysis with GPS to map photos taken by users to restau-
rant menu items [6, 20, 7]. However, these require users to
take action (taking photo and using app), rather than enabling
the fully automated sensing needed to identify events such as
mindless snacking. On the other hand, continuously collected
photos from first-person point-of-view (POV) cameras have
been used to identify eating episodes [29, 30], but have not
been used for nutritional analysis and the angle and photo
quality make this challenging.

Environmental sensors
The related work described thus far has relied on sensors
worn or actively used by an individual (in the case of a smart-
phone camera). While these approaches are the most mobile,
they require users to wear a device such as a microphone,
accelerometer, or POV camera. An alternate approach is to
instrument the environment where people eat, such as with
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Figure 1: Screenshot from the 3-camera setup (top and side
views are shown in upper left corner) during a shared meal, as
the participant on the left lifts food to their mouth.

smart utensils, surfaces, or kitchens outfitted to track calories
while cooking [10]. Sensor-embedded forks can be used to
count bites, and one such fork also used color sensors in the tip
to classify among 17 food types with an F-measure of 87.5%
[16]. While this approach could be expanded to other utensils
(spoon, knife, chopsticks) to allow more eating methods, it
cannot identify hand-held food such as sandwiches. Sensor-
augmented cups have also been used to classify liquids based
on their pH [18]. Pressure-sensitive surfaces can be used to
identify eating behaviors such as cutting food or stirring it. For
example, work by Zhou et al. [33, 34] classified between four
food categories with high accuracy, though the sensor was less
precise at measuring weight. However both the surface and
cup would require users to bring the devices with them for
meals outside the home.

Existing work has mainly studied a single body-worn sensor at
a time for a single task. Image-based and environmental sen-
sors have been used for more complete nutrition-monitoring
solutions, but these are less mobile and either require human
labor (in the case of human annotated and captured images)
or create privacy concerns (for POV cameras). In contrast
we show that food type is critical for estimating amount con-
sumed, and that estimating type accurately with a wide range
of foods requires multiple sensing modalities (audio, motion).

STUDY DESIGN AND SENSORS
We aim to investigate the use of multiple sensing modalities
for recognizing food type and amount for each intake. One
challenge for translation to real-world use is that controlled
lab studies often use few foods eaten separately (bite of apple,
piece of chocolate), while in-the-wild studies lack the ground
truth needed for rigorous evaluation (relying primarily on user
self reports of eating activity or the sensor signals themselves
to provide ground truth). We further aim to estimate food
type and amount consumed on a per intake basis, rather than
per meal, as this is ultimately needed to provide real-time
guidance such as feedback on speed or content of consumption,
or automated adjustment of insulin pump doses in diabetes.

We previously developed the ACE (accelerometer and audio-
based calorie estimation) dataset [19], which combined mul-

timodality sensing with detailed annotation (at the level of
chews and swallows) from video data. Here we describe the
study design and sensors, and discuss the previously unre-
ported food weight and food type measurements and annota-
tions developed in this paper.

Body-worn sensors
To capture signals that may indicate eating activities, partici-
pants wore four sensors. While this is somewhat unrealistic
for real-life use, it uniquely lets us compare each sensing
modality in the exact same situation (same food, user, and
setting), in contrast to prior work that has mainly evaluated
each separately. Future work may combine multiple sensors
into a single housing (e.g. audio and motion sensing earbud).

Acoustic sensor
We customized a standard earbud with internal and external
microphones and recorded at 44.1Khz with a pocket audio
recorder. The external microphone enables us to remove most
speech (external and from the user) and non-eating sounds,
as these are captured on both microphones while the subtle
eating signal is captured mainly on the internal microphone.

Wrist motion
An LG G watch was worn on each wrist, and recorded from
its 9-axis motion sensor at 15Hz. This sampling rate was
chosen to balance recording frequency and battery life and
ensured we could record a full day of data. Deploying a
smartwatch on each wrist enables comparison of accuracy
when instrumenting the dominant versus non-dominant hand,
and the value of having accelerometer data for both wrists,
which may be able to help discriminate between food type
(e.g. holding sandwich versus a piece of fruit).

Head motion
Previous work has shown that Google Glass’s 9-axis motion
sensor can detect eating-specific motion [24]. We recorded
from Glass using the same 15Hz sampling rate as for the
watches. Glass, which has a form factor similar to glasses
without lenses, was connected to a small external battery pack
to ensure sufficient battery life. The battery and audio recorder
were worn in a small running belt to allow free motion.

Each sensor records at a different rate, so we developed a
synchronization procedure. A controlled tap of all body-worn
devices on the scale at the beginning and end of recording
provided a spike in motion and audio data and was visible on
the video, enabling synchronization with high accuracy.

Ground truth sensors
Video
To be able to identify the composition and timing of each bite,
we instrumented the lab space with 3 IP-based, 1280x720
pixel resolution, H.264 encoding video cameras. These were
positioned on the wall (top view) and clamped to the table
where eating occurred (front, side view). The cameras pro-
vided clear views of each participant’s mouth and throat (to
identify chewing and swallowing) and the scale, as shown in
figure 1. We recorded at 30fps and previously regularized the
recordings to ensure exactly this recording rate, as the actual
mean frame rate was 30.08fps (min 8, max 32fps).
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Figure 2: Representative example of intake annotations. Circles indicate food intakes, and the bar shows duration of a fluid intake.
When the burger is not placed on the scale between bites, a weight is assigned to the group of 3 intakes.

Food weight
To record weight of each intake (rather than total consumed
over an entire meal), we embedded a balance in the table used
for eating (visible in figure 3 with food on top). The weigh
scale (Sartorius 12.5x9.5 inch Midrics weighing platform with
Combics 2 IP44 indicator) recorded continuously at 10Hz
with 0.5g resolution. The large platform and wooden surround
we built to be nearly flush with top of the weighing platform
ensured that participants could eat naturally and would not
accidentally rest their arms on the scale.

Data collection
With approval from the university IRB, data was collected
from 6 participants (4 male, 2 female), in two ~6hr sessions
for each person for a total of ~72hrs of data. Participants did
not receive incentives for participation. The data collected
allow us to obtain ground truth about what food type was con-
sumed and how much was eaten in each bite, while ensuring
behavior was as realistic as possible. To that end, participants
ate the foods of their choosing in the quantities of their choos-
ing (rather than selecting from a limited set of foods). Each
participant had at least two meals of their choice and some
also chose to consume snacks. Note that we do not make a
formal distinction between meals and snacks, as some peo-
ple simply ate small meals. Roughly, snacks here are eating
episodes outside of usual meal times that were not in place
of a meal. Outside of eating sessions participants were free
to move about, work at a computer, nap or do the activity of
their choice (one did push ups, others played games on their
phones). Participants remained in the lab space to ensure activ-
ities were recorded on video. However behavior during meals
was completely unrestricted, so participants could multitask
(e.g. eating and working on a laptop or using a mobile phone),
share meals with research group members, and talk while eat-
ing. All meals and snacks were eaten at the scale-instrumented
table. Outside of meal periods, drink containers were weighed
on the scale after each drink to determine intake weight.

Annotation and ground truth

Eating activities
Annotation of the video data does not provide true ground
truth, as some events such as swallows may be missed, but it
is the best approximation and ensures no bias (as when using
one of the sensors to find the activities) and unrestricted move-
ment (in comparison to having an individual or researcher

mark events in real-time). The video was annotated indepen-
dently by two researchers. Most annotations matched (and
could be merged automatically), but all were discussed and
resolved in a collaborative process involving a third researcher.
Rather than coarse activities such as meals, we focused on
fine-grained annotation of eating as information about individ-
ual chews (including their frequency) can provide insight into
the amount and type of food consumed. The annotations in-
cluded the following italicized activity codes, where brackets
indicate events with a duration, and asterisks those that can be
performed with one or both hands:

• preparation[]* of food, such as stirring, cutting, or scooping

• delivery[]* of food or drink to the mouth

• fluid intake[], solid intake, marked when food or drink first
passes the lips. Fluid intake means continuous intake from
a vessel or straw, and a solid intake is a discrete quantity.
A food such as soup can be consumed multiple ways in a
single meal.

• chew, annotated when jaw first closes

• mouthing[] or manipulating food with the tongue

• swallow, annotated when visible in the throat

• touching the face with a napkin[]*

Other activities such as walking or typing were not annotated,
but are guaranteed to be negative examples (not eating or
drinking). Annotation of each session using vCode [14] took
each researcher around 8 hours and merging 2-3 hours.

Food type and amount
In this work we augment the eating activity annotations with
type and quantity annotations for each intake of food or drink.
Annotations were once again done by two researchers, who
then discussed and combined their annotations. Due to the
smaller number of events (intakes rather than chews), there
were few disagreements and little ambiguity, so a third person
was not needed to help merge. For example, a difference in
annotation may be due to one annotator forgetting to subtract
the weight for a utensil, which is clear upon video review.
However, as a precaution we recorded video and audio of
the annotation merging process in case the rationale for an
annotation needed to be examined later.

We developed a tool to visualize annotation sequences (de-
scribed in the previous section) along with the video data, and
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Figure 3: Sample of meals consumed by participants. Top two rows are mainly snack and breakfast foods, and bottom two rows
primarily depict lunch and dinner. Many meals involved combinations of foods.

raw scale data. Annotators first labeled the set of foods in each
meal, then assigned one or more food types to each intake.

We treat complex foods (e.g., burger) as a single food type
rather than attempt decomposition into components. Thus if
a participant removes a pickle from a burger and eats that by
itself, that intake is still annotated with the burger type. For
foods that are dipped or otherwise combined by participants in
simple ways, such as chips and guacamole, intakes could be
labeled with each food individually (e.g. if participant clearly
licks guacamole off the chip, and does not consume the chip
in an intake). The set of foods associated with each intake
is ordered from most to least prominent (e.g. [bagel, cream
cheese] indicates more bagel than cream cheese in the bite).

Weight of food or drink consumed in each intake was derived
from the scale time series, after accounting for utensils and un-
consumed food (e.g. bite of a tortilla chip that is then replaced
on scale). When food was not replaced on the scale in between
intakes, such as when a participant took multiple bites before
putting a sandwich down, a total weight is assigned to the
group of intakes. While this does not yield true ground truth
for the size of these intakes, we aimed to allow natural eating
behavior, rather than force participants to eat in a predefined
way, such as putting down a slice of pizza after every bite.

Figure 2 shows an example annotation sequence. One intake
combines multiple foods (fries, ketchup), and later there is a
fluid intake of water. Before and after the water the participant

consumes a burger, but does not put it back down on the scale
between bites. As a result, a weight is assigned to the group.

Data characteristics
The raw data included a total of 1489 food and 285 drink
intakes, 17,080 chews, and 1422 swallows.1 A total of 51
unique foods and drinks were consumed. We exclude 4 foods
(pocky, brownie, cheese, sour cream) with fewer than 4 intakes
(most with only a single intake), leading to a total of 6 intakes
excluded from further analysis. We also combined all drinks
(coconut water, hot and iced coffee, various sodas, Snapple,
tea, water, and sparkling water) into a single drink class. Milk-
shake remained as its own food type as it contained chunks
of chocolate and was sometimes consumed with a spoon. No
drink intakes were excluded.

This leaves a total of 1768 total intakes (1483 food + 285
drink), and 40 unique food types. In all, over 450 minutes was
spent eating across 30 meals (mean 2.5 per person, s.d. 0.52).
Participants ate a mean of 8.5 different foods (s.d. 2.9) over
their two sessions, and had a mean of 2.3 drinks (s.d. 1.2).

A sample of foods consumed are shown in figure 3. Only
three foods (popcorn, water, and yogurt) were consumed by
multiple participants. The yogurt also varied, with one be-
ing smooth and the other having candy pieces added. Foods
spanned a range of textures and intake methods, including
1Note that these were the total annotated, and the true number of
swallows may be greater than the amount visible on video.



sushi (chopsticks), tacos and pizza (handheld), and steak (cut
with fork and knife). Further, many meals combined multiple
foods or were composed of many parts, such as spaghetti with
meatballs or tacos eaten with tortilla chips and guacamole. Par-
ticipants drank from a variety of containers, including mugs
and cups, bottles, and to-go cups with and without straws. Eat-
ing similarly used a variety of utensils and containers (bowls,
ceramic and paper plates, food wrappers, take-out containers).

While this does not capture all possible foods, it is a more real-
istic sample than a controlled set of foods eaten in single bites.
Further, an individual does not regularly consume hundreds of
different foods. Diet diversity has been examined as an indica-
tor for nutrition and health, and one study found a mean dietary
variety score (number of unique foods consumed) of 64 after
15 days among adults, with this score increasing rapidly over
the first few days of the study and then plateauing [13]. In a
practical system, we propose that population data can provide
a starting point, and over time, the system would adapt to a
user’s particular set of most likely food choices.

Mean intake weight and standard deviation varied consider-
ably by food type, as shown in figure 4, which depicts foods
with more than 10 intakes. Note that as mean weight increases,
standard deviation does too (Pearson’s r=0.60 across all foods
with >10 intakes and usable weights). Thus using only average
weight may lead to considerable bias, particularly for foods
with large intake sizes. Mean intake size (weighted by number
of intakes for the food) across all foods with more than four
intakes was 6g (unweighted mean of 11g), with a standard
deviation of 20g. The mean intake size for fluid intakes was
31g with a standard deviation of 25.5g. The data are highly
imbalanced, with some foods such as a banana consumed
in very few intakes while others such as popcorn were con-
sumed across a large number of intakes (comprising 11% of
all intakes). The number of samples for all foods used for the
weight estimation task are shown in table 1. Prior work [11]
that examined which hand was used for eating found 86% of
intakes were done with the dominant hand, while we find that
69% of intakes of food or drink were delivered to the mouth
with the dominant hand, 18% with the non-dominant hand,
and 13% with both hands.

METHOD
We now discuss how these data were used for food-type clas-
sification and amount estimation, starting with the data pre-
processing and then discussing the experimental evaluation.

Data processing and feature extraction
Noise cancellation
Before any further processing, we applied our previously de-
veloped [19] noise cancellation procedure. Essentially, this
procedure removes the sounds from the internal microphone
that are well-predicted by the external microphone signal. This
removed nearly all participant and external speech and noise,
leaving only a participant’s eating noises.

Feature extraction
In this work our goal is to assign a type and weight to each
of the 1768 food or drink intakes automatically. Rather than

Figure 4: Intake sizes for foods with more than 10 intakes.
Drink (30g mean) and broccoli (26g mean) are not pictured.

process the entire time series or whole meal periods, we hy-
pothesize that the time shortly before an intake until the end
of chewing is the most informative. This time contains inter-
action with the food or drink (e.g. picking it up), moving it
to the mouth, and food-specific chewing noises (in contrast to
right before swallowing, when food is softened and less likely
to have a distinct sound).

Thus we limit the data used for classification to the following
time windows. For audio and solid intakes, the time window is
from the intake until the last chew before the next intake. For
drink intakes, the window is that of the continuous fluid intake.
For motion data, both solid and liquid intakes are expanded
to include the delivery of food or drink prior to the intake, to
capture the movement of food or drink to the mouth.

For example, in figure 2 classification for the first bite of burger
will use data from the bite until the last chew before the intake
of fries (for audio features) and the same window plus the
delivery of the burger to mouth (for motion features). For the
intake of water in that figure, the time period shown in blue
will be used (audio), and will be augmented with the delivery
of the drink to the mouth (motion).

We extract three types of features: audio and motion features
(based on the sensor data) and annotation features (which are
higher order features).

Audio features After noise cancellation, we divide each intake
window (as defined above) into 200ms-long frames with an
offset of 20ms. This frame length is chosen so as to capture a
full chew without including multiple chews in a single frame.
For each frame we compute the following features: energy,
spectral flux, zero-crossing rate, and 11 MFCC coefficients.
Then, the mean and standard deviation of the frame features
forms the feature vector for the whole intake window.

Motion features We similarly segment each intake into 5-
second frames with a 100ms offset. The larger frame and
offset for motion data (head and wrists) is intended to capture
a complete movement such as of the wrist toward the mouth
or the head toward a drink, without capturing multiple intakes
in a single frame. We then compute the following features:
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Figure 5: Overview of pipeline. Each intake is classified based on motion and sensor data, and the raw data plus food type
information form input to estimate of amount consumed. Results are aggregated across all intakes to form meal total.

11 statistical features (mean, covariance, and derivatives), 15
temporal shape features (coefficients of polynomial fit to accel-
eration components), and 2 frequency features (zero crossing
rate and its standard deviation). We use mean and standard
deviation of features from each intake’s frames.

Annotation features In addition to features of the raw motion,
higher order features are also used in weight estimation. We
use number of chews after an intake, average period between
chews, and duration of intake window. We hypothesize that
due to physical constraints, number of chews will be related
to intake size (with more food requiring more chewing). Time
between chews may not be linearly related to intake size, as
both very small and large pieces of food may lead to gaps
between bites, but for different reasons. However this feature
may interact with food type. Finally, duration of intake win-
dow captures overall how much time is spent manipulating
food, whether by chewing or mouthing.

Estimation and evaluation
To evaluate classification, we used leave-one-intake-out
(LOIO) cross-validation, meaning N-folds where N is the
number of intakes. Leave-one-person out could not be used,
as foods were rarely shared across individuals. We did not use
leave-one-sample out as this may overstate true accuracy, and
we ensured that windows for adjacent intakes did not overlap.

Food type
To estimate food type, we trained a random forest classifier
with 40 trees,2 using most combinations of sensors (Glass,
right/left watch, audio) to compare their contributions. We
evaluate results for all 1768 intakes (using LOIO for each) us-
ing accuracy, defined as percent of intakes correctly classified.
We compare to the baseline of assigning each intake to the
most common class (popcorn), which has an accuracy of 11%.

Weight estimation
Weight estimation is treated as a regression problem with the
intake weights to be predicted. The features are as for food
type (audio, motion features), with the addition of annotation
features. While we excluded foods with fewer than four in-
takes at the beginning, we now also exclude foods with fewer

2Accuracy increased up to 40 trees (# of classes) then plateaued.

than 10 singleton intakes to provide enough samples for the re-
gression, and omit non-singleton intakes. That is, we exclude
those where a weight is assigned to a group of intakes (such
as the last burger intakes in figure 2, or when multiple bites of
pizza are taken before replacing the pizza on the scale). One
could divide total weight for the group by number of intakes,
but it is not obvious that intake sizes do not decrease or in-
crease systematically in such situations. We further excluded
foods where weight annotations were not usable: popcorn, as
intake size was near the scale resolution; and a Chinese meal
involving a stir fry and rice, because the food containers were
not entirely on the scale during the eating session. A small
number of fluid intakes could not be used because they were
outside the meal period and a researcher forgot to place the
container on the scale after consumption.

Thus, weight classification is done on a total of 17 foods plus
drinks (18 classes total), over a total of 500 solid intakes and
171 drink intakes (671 intakes total), again using LOIO.

We aim to understand the impact of knowing food type on
estimating food weight, and what improvements can be made
over assuming that each intake will have the mean weight for
that food type. We compare the following approaches:

Mode uses mean weight of the intake mode (solid, liquid).

Type assigns the mean weight for the intake mode and food
type. Note that this is not the same as mean for the food type,
since foods such as soup and milkshake were consumed in
multiple ways (sometimes with a spoon, others from a straw
or sipping from a container).

Full uses random forest regression with 40 trees, and in-
cludes all features (audio, motion, annotation) and ground
truth for food type and intake mode. This lets us determine
what portion of errors are due to inference of food type.

FullI uses all features (audio, motion, annotation) as above,
but instead of using ground truth, uses inferred food type
and intake mode. This lets us determine what performance
can be achieved with current type inference accuracy.

An overview of the estimation process is shown in figure 5,
where food type is determined on a per-intake basis, and then
forms input to amount estimation.
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Figure 6: Hierarchical clustering by sensor features and confusion matrix for food type classification with all sensors (AGRL).

For each food, we calculate accuracy using the relative mean
absolute percentage error. That is, we take the mean of the
absolute value of the differences between actual and estimated
weight for each intake, and then divide by mean intake size
for that food. To calculate overall values for solid foods, we
use the food averages weighted by number of intakes for each.

RESULTS

Food type classification
Accuracy for different combinations of motion and audio
sensors is shown in figure 7, indicated with abbreviations
(A=acoustic, G=Glass, R=right watch and L=left watch). The
best combination is all audio and motion sensors (AGRL),
with 82.7% accuracy. The three motion sensors (GRL: both
wrists, head motion) achieved 76.2% accuracy, while audio
alone had 67.8% accuracy. Note that there was a substantial
boost going from one to two sensors, with the difference be-
tween the best single sensor (A) and worst pair (RL) being
4.6%. By chance all participants were right handed, so combi-
nations with the right watch always indicate using data from
the dominant hand. Our results suggest using multiple sensors
can improve accuracy substantially, but multiple types of com-
binations may be feasible. For users who find audio sensing
too invasive, the tradeoff between 82.7 and 76.2% accuracy
may be acceptable. Further, while multiple sensors may be
obtrusive, when higher food type accuracy is needed these
may be combined into a single housing.

For comparison, prior work with the largest number of foods
(19 foods) achieved an accuracy of 80% using an audio sensor

Figure 7: Food type classification accuracy by sensor (# of
sensors is highlighted with color grouping).

[4], though all 3 participants ate the same foods and accuracy
was 70-75% with an earbud design like ours. One reason is
that motion and audio data are each insufficient (celery and
chicken wings may sound alike if eaten by the same person;
crunchy foods like pretzels and nuts may have similar noises),
and motion alone may not be able to tell us if a person is
eating yogurt or soup, but the two modalities together provide
information on complementary aspects of eating.

Detailed results using the best combination of sensors (AGRL:
head and wrist motion, audio) are shown in a confusion matrix



Figure 8: Food weight versus chews after intake.

in figure 6. To order the food types, we applied complete-link
clustering to the mean feature vectors for each food, shown in
the dendrogram at left. We find that crunchy and soft foods
cluster well (top and bottom sections), while liquids and tacky
foods (e.g. bagel with cream cheese) are grouped together in
the middle. Despite the large number of classes, the results lie
strongly along the diagonal. Note that all beverages aside from
a milkshake were combined into a single “drink” class. Yet
the matrix shows that indeed the shake is mostly a drink. This
is supported by how it was consumed: mostly with a straw, but
sometimes with a spoon (as there were chunks of chocolate in
the shake). We classify each intake as a single type, and use
the first (i.e. most dominant) annotation as the ground truth.
In the case of shrimp and rice, a review of the video shows
that the participant did not mix the foods but instead while still
chewing one, often took a large bite of the other, so foods may
be mixed in the mouth even though the intakes are distinct.

While most foods were only consumed once, popcorn and
water were both consumed by two people, enabling us to
conduct a small between-subjects evaluation. We train solely
on data from one participant, and test on the other. Accuracy
was 89%, significantly higher than the chance baseline of 52%,
showing that results can generalize across individuals.

Weight estimation
Initially, we hypothesized that food type would be key to
accurate estimation of amount consumed. Figure 8 illustrates
the connection for one of the features we extract for a meal of
steak and potato. The number of chews after intake and intake
size are strongly correlated, yet this is only apparent once the
intakes are separated by type.

Weight estimation error for each food and solids and drinks
overall is shown in table 1. For the individual foods, we report
mean absolute error per intake as a percentage of the mean
weight for that food type. As we hypothesized initially, knowl-
edge of food type is critical. Error is reduced by 85.4% using
mean weight for each food (Type) rather than only mean of

Table 1: Weight estimate error for each food, solids overall,
and drink in percent. Intakes are the number of singletons.

Class Intakes Mean Type Full FullI
salad 60 48.3 47.9 34.5 36.5
steak 58 87.7 36.0 31.5 43.3
soup 51 35.1 33.1 30.2 39.7

chipotle 44 22.3 19.2 19.1 19.4
spaghetti 41 56.6 52.6 43.3 47.9
chicken 38 85.9 61.1 66.6 102.3
peanuts 38 717.2 35.7 35.6 36.3
potato 33 61.1 61.1 42.5 43.6
shake 20 47.3 47.1 35.0 47.3
yogurt 20 28.3 27.0 21.8 24.8
eggs 19 46.4 45.8 32.9 32.9

almonds 15 435.2 31.8 27.9 29.8
burrito 15 86.8 95.8 62.5 63.3
fries 14 273. 0 47.1 47.2 73.2

broccoli 13 76.7 23.9 27.2 32.3
citrus 11 14.0 9.9 10.2 49.7
bread 10 41.9 37.0 34.1 48.2

All solids 500 127.3 41.9 35.4 45.3
drink 171 60.4 60.4 47.2 47.2

the intake modality (Mode). For foods with unusually small
intakes, such as peanuts, the gain is even greater, with a re-
duction from 717.2% to 35.7% error. As shown in figure 4,
mean intake weight varied considerably by food type (notably
it also varied significantly by food type within individuals).
Thus, assuming a standard intake size will lead to consider-
able error, but methods focused on counting bites (e.g. using
wrist motion or smart utensils) can be substantially improved
by incorporating food type information – whether inferred
automatically or provided by a user.

Results were further improved by leveraging annotation, audio,
and motion features (Full) with a 6.5% error reduction over
Type (total of 91.9% over Mode baseline). The improvement
is expected for a food such as the salad with salmon (13.4%
improvement in error) and burrito (33.3% improvement), as
both have a lot of variation between bites. However, there
is also considerable error reduction on potato (18.6%) and
eggs (13.0%), which have little variation in content or tex-
ture, though both had a high standard deviation in intake size.
Countable foods such as broccoli florets and fries, which have
consistent intake sizes, benefit the least from adding sensor
data.

As illustrated in figure 9, there was no correlation between
mean intake weight and accuracy (r = −0.17), or meal du-
ration and accuracy (r = 0.20), though standard deviation of
intake size and accuracy were weakly correlated (r = 0.50).
This suggests that few samples may be needed for foods with
little variation, while accuracy for those where intake sizes
vary considerably can be improved with more training data.
Importantly, the lack of correlation with intake weight and
meal duration suggests that our accuracy is the same for both
meals and shorter duration snacks. This is vital for nutrition
monitoring, as such snacks may be dense in calories. Varia-



Figure 9: Weight estimation error as a function of three meal features. Each point indicates a single food.

tions in accuracy between individuals cannot be disentangled
from variation due to food type, since few types were con-
sumed by multiple participants.

While our weight and type estimates are imperfect, we aim
primarily to match human performance without the need for
human labor. For example, our average absolute error on solid
foods of 35.4% is comparable to crowdsourced image annota-
tion (Platemate) at 33.2% [21] error in calorie estimate, where
it also took on average an hour and a half for the task to be
completed. Neither our approach nor Platemate systemati-
cally over or underestimate quantity consumed. On the other
hand, self reports of energy intake consistently under estimate
consumption by about 20% [15].

Combined system performance
To understand how the type and amount estimates can provide
calorie counts, consider the running example of a meal of 396g
steak (at 2.5kcal/g) and a 250g baked potato (at 1.0kcal/g), for
a total of 1240kcal. Using food type and sensor features (Full),
each food type (steak, baked potato) would be mapped to items
in a food database. We used the USDA Nutrient Database,
which can also be queried with Google searches. Our worst
case estimate would be 1240±439kcal, where every intake is
an over- or underestimate. In reality, meal error will be lower
as variance in per-intake estimates cancel out.

For applications such as automated calorie counting, both food
type and amount must be estimated. While type accuracy was
imperfect, at 83%, using inferred food type (FullI) only mod-
estly increased weight estimate error (mean 9.9% for solid),
compared to using ground truth of food type. In practice, se-
quence voting among intakes [2] could reduce type error and
achieve weight estimation error closer to the Full result.

DISCUSSION
A key implication of our work is the need for devices with
multiple sensing modalities (motion, audio). While a combina-
tion of modalities led to significant improvements in accuracy,
this comes at the cost of users having to wear multiple devices.
In the future, more work is needed on larger and more diverse
populations (including individuals with chronic disease) to
understand generalizability and how to best adapt the classifi-
cation system to individuals. Further, there is a need to balance
detailed ground truth (at the level of chews), with weakly la-
beled data collected in the wild. Annotation from video (rather

than marking meal start and end) let us determine how much
meal time was spent chewing versus talking or between bites,
but this approach does not scale or allow more diverse eating
contexts.

One limitation is that we did not distinguish between types of
liquids, and that can have a significant impact on caloric intake.
However, once the eating modality (liquid, solid) and amount
(e.g. ounces of fluid) are inferred, personalized training data
such as knowledge that a user usually drinks coffee or juice
in the morning and other external cues (such as GPS data
indicating that user is at a coffee shop) may help fill in this
gap. Alternatively, sensor data may be augmented with food
and drink images that could allow liquids to be identified.

Similarly, we did not decompose complex foods into their
parts, and did not attempt to recognize each component of
each bite. Despite the video data, it is difficult to create such
annotations with high accuracy. For example, a user may add
guacamole to a chip but eat the combination in multiple bites,
making it difficult to determine the proportion of guacamole
and chip in each bite. Our aim is primarily to achieve perfor-
mance comparable to human annotators without the human
labor, but in the future users may be able to provide high level
annotation on combined foods (correcting automated logs).

CONCLUSIONS
To create fully automated nutrition logs, we need methods
that can automatically determine what and how much a person
consumes, rather than identifying only if they are eating. Such
a solution may ultimately lead to computer-generated food
logs (removing the need for human labor, and making logs
objective), identification of nutritional deficiencies, and better
management of diseases like diabetes. We show that 1) motion
and audio sensing together lead to significantly more accurate
estimates of food type (82.7% accuracy) than either modality
alone, and 2) with knowledge of food type, food quantity
can be estimated with 35.4% error (reduced from a 127.3%
baseline error), on par with human annotators. Our publicly
available dataset with detailed annotations will enable further
work to reduce these error rates (http://www.skleinberg.org/
data.html).
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