Causal Inference: prediction, explanation, and intervention

Lecture 4: Graphical models and Bayesian Networks
Samantha Kleinberg
samantha.kleinberg@stevens.edu
Main topics today

• Graphical models intro
 • Representation
 • Inference
 • Learning
• What makes a graphical model causal?
• How to use graphical models to answer causal questions
 • Predicting effects of actions
 • Counterfactual queries
Why graphical models?

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Chronic Bronchitis</th>
<th>Lung Cancer</th>
<th>Fatigue</th>
<th>Mass on X-ray</th>
<th>(P(S, CB, LC, F, M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\(n \) binary variables = \(2^n \) entries
Some notation

- $X_1, X_2 \ldots X_n$ are a set of random variables
- X_1 = variable, x = particular value of X_1
- For coin, $X=$ {heads, tails}

\[\sum_x P(x) = \sum_{x \in \{ \text{heads, tails} \}} P(x) \]

- $P(X_1, X_2 \ldots X_n)$ is set of joint probability distributions over all assignments of variables
- If each variable binary, need 2^n parameters
- Gives set of equations
Some more notation

Binary variables X,Y

$$P(x) = P(x | y)P(y) + P(x | \neg y)P(\neg y)$$

General case

$$P(x) = \sum_Y P(x | y)P(y)$$
Chain rule

Last week: \(P(A \cap B) = P(A|B)P(B) \)

Multiple variables:

\[
P(X,Y,Z) = P(X|Y,Z)P(Y,Z) \\
= P(X|Y,Z)P(Y|Z)P(Z)
\]
Chain rule (general)

\[P(X_1 \ldots X_n) = P(X_1 \mid X_2 \ldots X_n) P(X_2 \mid X_3 \ldots X_n) \ldots P(X_n) \]

\[= \prod_{i=1}^{n} P(X_i \mid X_{i+1} \ldots X_n) \]
Key observation: independence

- If variables independent, fewer parameters needed
- When $X_1 \ldots X_n$ are all independent

$$P(X_1 \ldots X_n) = \prod_{i=1}^{n} P(X_i)$$
Conditional independence

Yellowed fingers and lung cancer are dependent:

\[P(Y, L) > P(Y)P(L) \]

But they are independent conditioned on smoking (S)

\[P(S, Y, L) = P(Y|L, S)P(L|S)P(S) \]
\[= P(Y|S)P(L|S)P(S) \]
Graphical model

- Describes independencies in a set of variables
- Directed
 - Bayesian network
 - HMM (next week)
- Undirected
Graphical model and independencies

A node is independent of its non-descendants given its parents.
Terminology

- Ancestor
 - Parent
 - Non-descendant
 - Child
 - Descendant
 - Parent
 - Non-descendant
 - Non-descendant

Markov blanket

- Markov blanket: parents, children, children’s parents
- Node independent of all others conditioned on Markov blanket
d-separation and Markov blanket

- Markov blanket: set of nodes that separate a node from all others

- d-separation: Method for determining whether a pair of nodes (or sets of nodes) are independent conditioned on another set
d-separation

• Equivalent statements, for sets of nodes X, Y, Z in graph G:

 • X and Y are d-separated by Z (Z can be node or set of nodes) in G

 • X and Y are conditionally independent given Z

 • Z blocks all paths between X and Y
Definition: d-separation

- Node v is a collider if two arrowheads meet at v

- X and Y are d-connected by Z in graph G iff there exists an undirected path between a vertex in X and vertex in Y s.t. for every collider C on the path, C or descendant of C is in Z and no non-collider on path is in Z

- X and Y are d-separated by Z in G iff they are not d-connected by Z in G
Example 1

- $X \rightarrow Y \rightarrow Z$

- $X \leftarrow Y \rightarrow Z$

- In both cases, X,Z d-separated by Y: no colliders on path from X to Z, and X and Z not d-connected by Y
Example 2

- Are Y, Z d-separated by W?

- No, d-connected by X and W is descendent.
DAG and joint probability

\[P(X_1 \ldots X_n) = \prod_{i=1}^{n} P(X_i \mid X_{i+1} \ldots X_n) \]

Factorize:

\[P(X_1 \ldots X_n) = \prod_{i}^{n} P(X_i \mid pa(X_i)) \]
Conditional independence from graph

\[E \perp B \]
\[A \perp R \mid E, B \]
\[B \perp E, R \]
\[C \perp B, E, R \mid A \]
\[R \perp A, B, C \mid E \]
Components of a Bayesian network

1. Directed acyclic graph

2. Conditional probability distributions

\[P(X_1\ldots X_n) = \prod_{i} P(X_i \mid pa(X_i)) \]
Conditional probability distribution

- In this lecture: discrete (usually binary valued) variables

- Conditional probability tables

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P(Z=T)</th>
<th>P(Z=F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Simple method for building a BN

For X_1, X_2, \ldots, X_n:

- Add X_i to graph
- Add edges from $\text{pa}(X_i)$ where $P(X_i|X_1\ldots X_{i-1}) = P(X_i|\text{pa}(X_i))$
- Add conditional probability $P(X_i|\text{pa}(X_i))$

Pearl, J (1988) Probabilistic Reasoning in Intelligent Systems
Example (1)

• Coin A, Coin B

\[A \perp B \]

• What’s Bayesian network?
Example (2)

• Cavity, Toothache

\[C \not\rightarrow T \]

• Possible BNs?
Example (3)

- Barometer, Rain, Air Pressure

\[B \perp R \mid A \]

- Possible BNs?
Notes on creating a BN

- Multiple BNs consistent with same relationships
- Order of operations can matter
Causal graph

• Arrows denote direct causes
 • Edge from X to Y means X causes Y
• DAG
What makes a BN causal?

- Causal Markov condition
- Faithfulness
- Causal sufficiency
- + a few other assumptions, e.g. variables “correctly” specified
Causal Markov condition (CMC)

Node in the graph is independent of all of its non-descendants (direct and indirect effects) given its direct causes.
But...

- Independence implies many networks
- Network implies 1 set of independence relationships

\[Y \perp Z \mid X \]
...Also

\[P(C_1 = H \land C_2 = H) > P(C_1 = H) P(C_2 = H) \]

\[\frac{5}{10} > \frac{6}{10} \times \frac{6}{10} \]

\[C_1 \perp C_2 \]
CMC and screening off

- Recall Common Cause Principle (CCP)
 - If \(P(X^Y) > P(X)P(Y) \) then either \(X \) causes \(Y \) (or vice versa) or they have a common cause.

- Now: if \(P(X^Y) > P(X)P(Y) \) and they have a common cause \(C \), it means \(X \) ind \(Y \mid C \).

- Note that CCP seeks single common cause. CMC allows for sets of nodes.
Problems: feedback
Problems: Indeterminism

- $P(\text{picture}|\text{switch}) < P(\text{picture}|\text{switch}, \text{sound})$

Completeness of graph

• Complete: all common causes included, all causal relations among variables included

• Incomplete: not all intermediate factors necessarily included
Faithfulness

• Exactly the dependencies in the underlying structure hold in the data
 • i.e. Independence relations not from chance but from structure
 • No canceling out
Example

- Smoking
 -
 -
 +

+ Exercise
 -

+ Health
 -
 +
Another example

Gene A

Gene B

Phenotype

- +

+ +
A final example
(deterministic chain)

\[X \perp Z \mid Y \]
Selection bias

Recap of problems for faithfulness

- Only true in large sample limit
- Simpson’s paradox
- Selection bias
- Statistical tests
• CMC: population produced by structure has these independencies

• Faithfulness: population has only these independencies Why do we need both?
Causal sufficiency

- All common causes of pairs of variables measured
- Not sufficient if Y not measured
Completeness vs. sufficiency

- Completeness: common causes are included in causal graph
- Sufficiency: all common causes have been measured
In absence of sufficiency...

- Can still learn something
- Some relationships may appear in all graphs
- Can find set of all graphs representing independence relations, with nodes for possible hidden variables
- Timing information helps
Recap of causal inference with BN

- What makes a Bayesian network causal?
 - The assumptions: CMC, sufficiency, faithfulness

- Assumptions+Data \rightarrow Independencies \rightarrow Causal BN(s) \rightarrow effects of interventions
Uses for BNs

• Actions
 • What happens if we do X?

• Counterfactuals
 • What if things happened differently?

• Explanations
 • Why did X happen?
Counterfactuals reminder

• If I had not gone running, I would not have gotten a sunburn

• If the patient had taken the drug, she would have recovered

• Had I bought shares of Apple stock in 2004, I would have made a large profit
Pearl on Counterfactuals

• Like do(), except backward looking and changing value of variable

• Three steps
 • Abduction: use evidence to interpret past
 • Action: change to hypothetical values
 • Prediction: see consequences of actions
If D, then D would still be true if A were false

\[D \rightarrow D_{\neg A} \]

Back to BNs

- Interventions
- Structure + parameter learning
Manipulability

BPA

Obesity
Ideal manipulations

Definition: change in value of a variable that does not introduce any other changes (except those produced by the change in variable)
Testing popularity, how do we manipulate its value?

Speeches

Popularity → Donations
Seeing versus doing

- Disease
- Treatment
- Doctor
- Hospital
- Outcome
What’s $P(C)$ if I turn the sprinkler on? Is this the same as $P(C|S=T)$?
Intervention and joint probability

• \neq just incorporating evidence

• Evidence: set value of observed values

• Intervention: set value by forcing variable to take value independent of its parents’ values

If turn on sprinkler, the fact that it’s on no longer gives info about C
Intervention and joint probability

\[P(C, S, W, R) = \sum_{C, S, W, R} P(c) P(s | c) P(r | c) P(w | s, r) \]

\[P(C, W, R | do(s)) = \sum_{C, W, R} P(c) P(s) P(r | c) P(w | s, r) \]
do() operator

• Model can help us determine the effect of interventions

• \(P(X=x|Y=y) \neq P(X=x|\text{set } Y=y) \)

• Big assumption: can set variable T/F!
Example

\[P(S|\text{do}(M)) \]
Example

\[P(s \mid \text{do}(m)) = P(s \mid \hat{m}) \]

\[= \sum_d P(s, d, \hat{m}) / P(\hat{m}) = \sum_d P(s \mid d, \hat{m}) P(d \mid \hat{m}) P(\hat{m}) / P(\hat{m}) \]

BUT!

\[P(d \mid \hat{m}) = P(d) \]

\[P(m) / P(m) = 1 \]

SO

\[= \sum_d P(s \mid d, \hat{m}) P(d) \]
Summary of do-calculus

• Insertion/deletion of observations
• Action/Observation exchange
• Insertion/deletion of actions

• In general, may have unobserved/hidden variables
Some caveats

• Time
• Modularity
• Possibility of intervening
• Efficacy
Learning

- Structure
- Parameters
Structure learning approaches

- Search and score
 - Define scoring function for how well structure fits data
 - Search over set of graphs, maximizing scoring function

- Notes
 - Computational complexity
Structure learning approaches

• Constraint based
 • Use repeated conditional independence tests
 • E.g. Connect all nodes with undirected edges, repeatedly do conditional independence tests to remove/orient edges

• Notes
 • An incorrect edge removal/orientation affects later tests
Search and score

• Define scoring function
 • Bayesian information criterion (BIC)
 • Aims to find most compact graph fitting data
 • Note minimality condition
 • $\log P(D|G) \approx \log P(D|G, \theta_G) - \log N/2 \times \text{Dim}(G)$
 \[\text{Dim} = \#\text{parameters}, \ m = \text{data size}\]

• How to search over set of graphs?
• Overfitting
Heuristics

• Can’t search over all graphs

• But
 • Can explore nearby graphs: add, remove, reorient edges
Greedy hillclimbing

• Apply all possible alterations, pick highest scoring change, iterate with new graph until no changes improve score

• Can get stuck in local maxima
 • But can randomly restart
 • Simulated annealing
Constraint-based learning

• Find conditional independencies
 • Note: have to decide when to accept/reject independence
 • Add edges (or remove) according to these

• Get CPT after
Things to beware of with inference

- Sample size
- Missing data (not just variables)
- Multiple testing (and FDR)
- What structures DAG can/cannot represent (e.g. time series and feedback)
- Variable representation
The good news

- Can add time
- Can experiment
- Methods for testing assumptions
Parameter learning

• Have structure, what’s CPT for each node?

• Two cases
 • Complete data (no missing variables or values)
 • Incomplete data
Parameter learning: complete data

- Three parameters
 - $P(F)$, $P(A|F)$, $P(C|F)$
Parameter learning: complete data

- Aches
- Chills

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1/7</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0/7</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>2/7</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>1/7</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0/7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0/7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>2/7</td>
</tr>
</tbody>
</table>

- Three parameters
 - \(P(F) \), \(P(A|F) \), \(P(C|F) \)
Parameter learning: complete data

- Three parameters
 - \(P(F), P(A|F), P(C|F) \)

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1/7</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0/7</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>2/7</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>1/7</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0/7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0/7</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>1/7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>2/7</td>
</tr>
</tbody>
</table>

\[
P(F=T) = \frac{4}{7} \quad P(F=F) = \frac{3}{7}
\]

\[
\begin{align*}
P(A=T) & = \frac{3}{4} \quad P(A=F) = \frac{1}{4} \\
P(A=T) & = \frac{1}{3} \quad P(A=F) = \frac{2}{3}
\end{align*}
\]
Software

Overview: http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
Inference recap

<table>
<thead>
<tr>
<th></th>
<th>BN</th>
<th>DBN</th>
<th>Granger</th>
<th>Temporal logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>Graph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>C/D/M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycles</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latent vars.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prediction</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Token cause</td>
<td>Counterfactual-based</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further reading

• Graphical models and causality

• Actual cause

 • Pearl’s book

For next week

- How can we find how long it takes for smoking to cause lung cancer?
- When to buy/sell a stock after you hear some news?